Access the full text.
Sign up today, get DeepDyve free for 14 days.
This work is concerned with asymptotic properties of multi-dimensional random walks in random environment. Under Kalikow’s condition, we show a central limit theorem for random walks in random environment on ℤ d , when d≥2. We also derive tail estimates on the probability of slowdowns. These latter estimates are of special interest due to the natural interplay between slowdowns and the presence of traps in the medium. The tail behavior of the renewal time constructed in [25] plays an important role in the investigation of both problems. This article also improves the previous work of the author [24], concerning estimates of probabilities of slowdowns for walks which are neutral or biased to the right.
Journal of the European Mathematical Society – Springer Journals
Published: Jun 1, 2000
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.