Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear

Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under... Following the theory of linear piezoelectricity, we consider the problem of determining the singular stress and electric fields in an orthotropic piezoelectric ceramic strip containing a Griffith crack under longitudinal shear. The crack is situated symmetrically and oriented in a direction parallel to the edges of the strip. Fourier transforms are used to reduce the problem to the solution of a pair of dual integral equations. The solution of the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate for piezoelectric ceramics are obtained, and the results are graphed to display the influence of the electric field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mechanica Springer Journals

Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear

Acta Mechanica, Volume 120 (4) – Feb 1, 2005

Loading next page...
 
/lp/springer-journals/singular-stress-and-electric-fields-of-a-piezoelectric-ceramic-strip-AKd3BCPZyq
Publisher
Springer Journals
Copyright
Copyright © 1997 by Springer-Verlag
Subject
Engineering; Theoretical and Applied Mechanics; Classical and Continuum Physics; Continuum Mechanics and Mechanics of Materials; Structural Mechanics; Vibration, Dynamical Systems, Control; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0001-5970
eISSN
1619-6937
D.O.I.
10.1007/BF01174314
Publisher site
See Article on Publisher Site

Abstract

Following the theory of linear piezoelectricity, we consider the problem of determining the singular stress and electric fields in an orthotropic piezoelectric ceramic strip containing a Griffith crack under longitudinal shear. The crack is situated symmetrically and oriented in a direction parallel to the edges of the strip. Fourier transforms are used to reduce the problem to the solution of a pair of dual integral equations. The solution of the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate for piezoelectric ceramics are obtained, and the results are graphed to display the influence of the electric field.

Journal

Acta MechanicaSpringer Journals

Published: Feb 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off