Sharing a quantum secret without a trusted party

Sharing a quantum secret without a trusted party In a conventional quantum (k, n) threshold scheme, a trusted party shares a secret quantum state with n participants such that any k of those participants can cooperate to recover the original secret, while fewer than k participants obtain no information about the secret. In this paper we show how to construct a quantum (k, n) threshold scheme without the assistance of a trusted party, who generates and distributes shares among the participants. Instead, each participant chooses his private state and contributes the same to the determination of the final secret quantum state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Sharing a quantum secret without a trusted party

Loading next page...
 
/lp/springer-journals/sharing-a-quantum-secret-without-a-trusted-party-Di3tI0lf6b
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-010-0180-3
Publisher site
See Article on Publisher Site

Abstract

In a conventional quantum (k, n) threshold scheme, a trusted party shares a secret quantum state with n participants such that any k of those participants can cooperate to recover the original secret, while fewer than k participants obtain no information about the secret. In this paper we show how to construct a quantum (k, n) threshold scheme without the assistance of a trusted party, who generates and distributes shares among the participants. Instead, each participant chooses his private state and contributes the same to the determination of the final secret quantum state.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 25, 2010

References

  • How to share a secret
    Shamir, A.
  • Quantum secret sharing without entanglement
    Guo, G.P.; Guo, G.C.
  • Bidirectional quantum secret sharing and secret splitting with polarized single photons
    Deng, F.G.; Zhou, H.Y.; Long, G.L.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off