Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract For complete chemical processes, downstream operation steps are essential, but on a miniaturized scale, they are not so far developed as the microreactors. This contribution presents three different unit operations for phase and component separation. Liquid-liquid extraction is often performed in columns, which were miniaturized for higher separation efficiency and flow rates suitable for processes in flow chemistry. Two-phase mass transfer processes in capillaries benefit from rapid final phase separation, which can be performed in an in-line phase splitter based on different surface wetting behavior. Crystallization is often a final purification step, which is performed in a continuously operated helical tube setup with narrow residence time distribution. For all unit operations, design criteria are shown with typical applications. The methodology of downscaling of known equipment and employing typical microscale phenomena such as good flow control, laminar flow, or dominant surface forces leads to successful equipment design.
Journal of Flow Chemistry – Springer Journals
Published: Jul 1, 2016
Keywords: chemistry/food science, general; green chemistry; organic chemistry; inorganic chemistry; nanochemistry; industrial chemistry/chemical engineering
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.