Reward shifts and motor responses following microinjections of opiate-specific agonists into either the core or shell of the nucleus accumbens

Reward shifts and motor responses following microinjections of opiate-specific agonists into... 213 120 120 2 2 Patricia I. Johnson Jason B. Goodman Rachel Condon James R. Stellar Department of Psychology Northeastern University 125 Nightingale Hall 02115 Boston MA USA Department of Pharmacology Loyola University Chicago, Stritch School of Medicine 2160 South First Ave. 60153 Maywood IL USA Abstract Differences in pharmacology, anatomical connections, and receptor densities between the “core” and “shell” of the nucleus accumbens suggest that behavioral activity normally modulated by the accumbens, such as reward and motor functions, may be differentially regulated across the mediolateral axis. This study investigated the effects of opiate receptor-specific agonists on reward and motor functions in either the accumbens core or shell, using the intracranial self-stimulation (ICSS) rate-frequency curve-shift method. Microinjections of the mu opiate receptor-specific agonist, DAMGO (vehicle, 0.03 nmol, and 0.3 nmol), or the delta opiate receptor-specific agonist DPDPE (vehicle, 0.3 nmol, 3.0 nmol), were administered bilaterally in a random dose order with a minimum of 3 days between injections. Rats were tested over three consecutive 20-min rate-frequency curves immediately following a microinjection to investigate the time course of drug effects. Both opiate agonists decreased the ICSS frequency necessary to maintain half-maximal response rates when injected into the medial and ventral shell region of the accumbens. However, DAMGO microinjections into the lateral accumbens core or the control site of the caudate increased the frequency necessary to elicit half-maximal response rates, while DPDPE microinjections into these regions had no effect. Evaluation of motor effects show that administration of DAMGO resulted in a suppression of activity in all locations. In contrast, DPDPE microinjections resulted in little or no effect on lever pressing activity at any location. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Psychopharmacology Springer Journals

Reward shifts and motor responses following microinjections of opiate-specific agonists into either the core or shell of the nucleus accumbens

Loading next page...
 
/lp/springer-journals/reward-shifts-and-motor-responses-following-microinjections-of-opiate-fBhkz0S9NI
Publisher
Springer Journals
Copyright
Copyright © 1995 by Springer-Verlag
Subject
Biomedicine; Pharmacology/Toxicology; Psychiatry
ISSN
0033-3158
eISSN
1432-2072
DOI
10.1007/BF02246193
Publisher site
See Article on Publisher Site

Abstract

213 120 120 2 2 Patricia I. Johnson Jason B. Goodman Rachel Condon James R. Stellar Department of Psychology Northeastern University 125 Nightingale Hall 02115 Boston MA USA Department of Pharmacology Loyola University Chicago, Stritch School of Medicine 2160 South First Ave. 60153 Maywood IL USA Abstract Differences in pharmacology, anatomical connections, and receptor densities between the “core” and “shell” of the nucleus accumbens suggest that behavioral activity normally modulated by the accumbens, such as reward and motor functions, may be differentially regulated across the mediolateral axis. This study investigated the effects of opiate receptor-specific agonists on reward and motor functions in either the accumbens core or shell, using the intracranial self-stimulation (ICSS) rate-frequency curve-shift method. Microinjections of the mu opiate receptor-specific agonist, DAMGO (vehicle, 0.03 nmol, and 0.3 nmol), or the delta opiate receptor-specific agonist DPDPE (vehicle, 0.3 nmol, 3.0 nmol), were administered bilaterally in a random dose order with a minimum of 3 days between injections. Rats were tested over three consecutive 20-min rate-frequency curves immediately following a microinjection to investigate the time course of drug effects. Both opiate agonists decreased the ICSS frequency necessary to maintain half-maximal response rates when injected into the medial and ventral shell region of the accumbens. However, DAMGO microinjections into the lateral accumbens core or the control site of the caudate increased the frequency necessary to elicit half-maximal response rates, while DPDPE microinjections into these regions had no effect. Evaluation of motor effects show that administration of DAMGO resulted in a suppression of activity in all locations. In contrast, DPDPE microinjections resulted in little or no effect on lever pressing activity at any location.

Journal

PsychopharmacologySpringer Journals

Published: Jul 1, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off