“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Rescue of avian adeno-associated virus from a recombinant plasmid containing deletions in the viral inverted terminal repeats



We have previously reported the complete genome sequence of avian adeno-associated virus (AAAV) strain YZ-1, isolated from healthy chickens in China. In this study, we describe the successful rescue of infectious virions from a recombinant plasmid containing the genome of YZ-1 with deletions in the viral inverted terminal repeats (ITRs). The complete genome of YZ-1 was cloned into a bacterial plasmid by a modified “A-T” cloning method. Six recombinant plasmids were selected for further experiments. Sequence analysis indicated that the six clones shared identical internal sequences except for the various deletions within ITRs at either end of the cloned genome. The recombinant plasmid pYZ525, harboring a YZ-1 genome with a 96-nt deletion at the 5′ end, was used to transfect CEL or HEK293 cells in the presence of the CELO virus or a helper plasmid, and rescued virions were obtained by both of the methods despite the presence of the deletions. Here, for the first time, we provide evidence that a certain number of nt deletions in the ITRs are not lethal for the rescue of viable AAAV from recombinant plasmids. This study provides insight into the unique biology of AAAV and the mechanism of viral replication.



Archives of VirologySpringer Journals

Published: Jan 1, 2012

DOI: 10.1007/s00705-011-1121-x

Free Preview of First Page

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.