Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Reduction and Immobilization of Chromate Using Nanometric Pyrite

Reduction and Immobilization of Chromate Using Nanometric Pyrite Two very fine pyrites were prepared using a top-down and a bottom-up method. A natural pyrite was extensively ball-milled and then sieved to obtain the fraction less than 25 µm (surface area 17 m2/g), while sub-micrometer pyrite (FeS2) rods with a surface area of 77 m2/g were prepared by the hydrothermal reaction of ferrous sulfate with sodium sulfite. The ground natural pyrite was found to fairly rapidly reduce chromium(VI) in a 100 ppm solution to chromium(III), but it only immobilized 65.6% of the chromium(III) product so it failed to lower the total chromium below the maximum contaminant level (MCL) for drinking water. However, the synthetic sub-micrometer pyrite completely reduced the chromium(VI) to chromium(III) within one minute and to reduce the total chromium concentration below the detection limit of 0.5 ppb within 3 min. The reactivity of FeS2 toward chromium(VI) does not correlate well with surface area due to the complex series of reaction that occur in both the redox and metal immobilization processes. Nevertheless, size reduction makes it progressively possible to completely remove chromium from chromate-containing solutions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Engineering and Performance Springer Journals

Reduction and Immobilization of Chromate Using Nanometric Pyrite

Loading next page...
 
/lp/springer-journals/reduction-and-immobilization-of-chromate-using-nanometric-pyrite-vmOwE7KBOp

References (60)

Publisher
Springer Journals
Copyright
Copyright © ASM International 2020
ISSN
1059-9495
eISSN
1544-1024
DOI
10.1007/s11665-020-04801-1
Publisher site
See Article on Publisher Site

Abstract

Two very fine pyrites were prepared using a top-down and a bottom-up method. A natural pyrite was extensively ball-milled and then sieved to obtain the fraction less than 25 µm (surface area 17 m2/g), while sub-micrometer pyrite (FeS2) rods with a surface area of 77 m2/g were prepared by the hydrothermal reaction of ferrous sulfate with sodium sulfite. The ground natural pyrite was found to fairly rapidly reduce chromium(VI) in a 100 ppm solution to chromium(III), but it only immobilized 65.6% of the chromium(III) product so it failed to lower the total chromium below the maximum contaminant level (MCL) for drinking water. However, the synthetic sub-micrometer pyrite completely reduced the chromium(VI) to chromium(III) within one minute and to reduce the total chromium concentration below the detection limit of 0.5 ppb within 3 min. The reactivity of FeS2 toward chromium(VI) does not correlate well with surface area due to the complex series of reaction that occur in both the redox and metal immobilization processes. Nevertheless, size reduction makes it progressively possible to completely remove chromium from chromate-containing solutions.

Journal

Journal of Materials Engineering and PerformanceSpringer Journals

Published: Sep 27, 2020

There are no references for this article.