Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation

Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased... Transgenic tobacco (Nicotiana tabacum L. cv. Samsun) plants with reduced levels of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase; EC 3.1.3.37) were produced using an antisense construct in which the expression of a tobacco SBPase cDNA clone was driven by the cauliflower mosaic virus (CaMV) promoter. The reduction in SBPase protein levels observed in the primary transformants correlated with the presence of the antisense construct and lower levels of the endogenous SBPase mRNA. No changes in the amounts of other Calvin cycle enzymes were detected using Western blot analysis. The SBPase antisense plants with less than 20% of wild-type SBPase activity were observed to display a range of phenotypes, including chlorosis and reduced growth rates. Measurements of photosynthesis, using both light-dosage response and CO2 response curves, of T1 plants revealed a reduction in carbon assimilation rates, which was apparent in plants retaining 57% of wild-type SBPase activity. Reductions were also observed in the quantum efficiency of photosystem II. This decrease in photosynthetic capacity was reflected in a reduction in the carbohydrate content of leaves. Analysis of carbohydrate status in fully expanded source leaves showed a shift in carbon allocation away from starch, whilst sucrose levels were maintained in all but the most severely affected plants. Plants with less than 15% of wild-type SBPase activity were found to contain less than 5% of wild-type starch levels. The results of this preliminary analysis indicate that SBPase activity may limit the rate of carbon assimilation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Planta Springer Journals

Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation

Loading next page...
 
/lp/springer-journals/reduced-sedoheptulose-1-7-bisphosphatase-levels-in-transgenic-tobacco-QsQEmu715m
Publisher site
See Article on Publisher Site

Abstract

Transgenic tobacco (Nicotiana tabacum L. cv. Samsun) plants with reduced levels of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase; EC 3.1.3.37) were produced using an antisense construct in which the expression of a tobacco SBPase cDNA clone was driven by the cauliflower mosaic virus (CaMV) promoter. The reduction in SBPase protein levels observed in the primary transformants correlated with the presence of the antisense construct and lower levels of the endogenous SBPase mRNA. No changes in the amounts of other Calvin cycle enzymes were detected using Western blot analysis. The SBPase antisense plants with less than 20% of wild-type SBPase activity were observed to display a range of phenotypes, including chlorosis and reduced growth rates. Measurements of photosynthesis, using both light-dosage response and CO2 response curves, of T1 plants revealed a reduction in carbon assimilation rates, which was apparent in plants retaining 57% of wild-type SBPase activity. Reductions were also observed in the quantum efficiency of photosystem II. This decrease in photosynthetic capacity was reflected in a reduction in the carbohydrate content of leaves. Analysis of carbohydrate status in fully expanded source leaves showed a shift in carbon allocation away from starch, whilst sucrose levels were maintained in all but the most severely affected plants. Plants with less than 15% of wild-type SBPase activity were found to contain less than 5% of wild-type starch levels. The results of this preliminary analysis indicate that SBPase activity may limit the rate of carbon assimilation.

Journal

PlantaSpringer Journals

Published: Dec 2, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off