Quantitative competitive PCR for the detection of genetically modified soybean and maize

Quantitative competitive PCR for the detection of genetically modified soybean and maize  The surveillance of food labelling concerning genetically modified organisms (GMOs) requires DNA-based analytical techniques. Present assay systems allow the detection of GMO in food; however, they do not permit their quantitation. In this study, we report the development of quantitative competitive polymerase chain reaction (QC-PCR) systems for the detection and quantitation of the Roundup Ready soybean (RRS) and the Maximizer maize (MM) in food samples. Three DNA fragments that differ from the GMO-specific sequences by an insertion were constructed and used as internal standards in the PCR. These standards were calibrated by co-amplifying with mixtures containing RRS DNA and MM DNA, respectively. The calibrated QC-PCR systems were applied to nine commercial food samples containing RRS DNA and to three certified RRS flour mixtures in order to elucidate whether these food samples contain more or less than 1% RRS DNA. Finally, the GMO contents of four samples that were found to contain more than 1% RRS were determined by QC-PCR using various amounts of standard DNA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Food Research and Technology Springer Journals

Quantitative competitive PCR for the detection of genetically modified soybean and maize

Loading next page...
 
/lp/springer-journals/quantitative-competitive-pcr-for-the-detection-of-genetically-modified-oVcNgXjhFm
Publisher
Springer Journals
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Food Science; Analytical Chemistry; Biotechnology; Agriculture; Forestry
ISSN
1438-2377
eISSN
1438-2385
DOI
10.1007/s002170050320
Publisher site
See Article on Publisher Site

Abstract

 The surveillance of food labelling concerning genetically modified organisms (GMOs) requires DNA-based analytical techniques. Present assay systems allow the detection of GMO in food; however, they do not permit their quantitation. In this study, we report the development of quantitative competitive polymerase chain reaction (QC-PCR) systems for the detection and quantitation of the Roundup Ready soybean (RRS) and the Maximizer maize (MM) in food samples. Three DNA fragments that differ from the GMO-specific sequences by an insertion were constructed and used as internal standards in the PCR. These standards were calibrated by co-amplifying with mixtures containing RRS DNA and MM DNA, respectively. The calibrated QC-PCR systems were applied to nine commercial food samples containing RRS DNA and to three certified RRS flour mixtures in order to elucidate whether these food samples contain more or less than 1% RRS DNA. Finally, the GMO contents of four samples that were found to contain more than 1% RRS were determined by QC-PCR using various amounts of standard DNA.

Journal

European Food Research and TechnologySpringer Journals

Published: Sep 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off