Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with highly potent neurotrophic and neuroprotective effects. PACAP and its receptors occur in the retina and PACAP has been applied in animal models of metabolic retinal disorders to reduce structural and functional damage. Furthermore, PACAP has been implicated as a potential anti-diabetic peptide. Our aim has been to investigate, by using a complex morphological, immunochemical and molecular biological approach, whether PACAP attenuates diabetic retinopathy. Diabetes was induced in rats with a single streptozotocin injection. PACAP was injected intravitreally into one eye (100 pmol) three times during the last week of a 3-week survival period. Retinas were processed for the following procedures: routine histology, immunohistochemistry (single and double labeling, whole-mount), quantitative reverse transcription with the polymerase chain reaction and Western blotting. Cone photoreceptors and dopaminergic amacrine and ganglion cells degenerated in diabetic retinas and glial fibrillary acidic protein were upregulated in Müller glial cells. The number of cones, the length of their outer segments and the cell number in the ganglion cell layer were decreased. PACAP ameliorated these structural changes. Moreover, PACAP increased the levels of PAC1-receptor and tyrosine-hydroxylase as detected by molecular biological methods. Thus, PACAP has significant protective effects in the diabetic retina. PACAP treatment attenuates neuronal cell loss in diabetic retinopathy, the protective effects of PACAP probably being mediated through the activation of PAC1-receptor. These results suggest that PACAP has a therapeutic potential in diabetic retinopathy.
Cell and Tissue Research – Springer Journals
Published: Feb 17, 2012
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.