Process-based modelling of nitrous oxide emissions from different nitrogen sources in mown grassland

Process-based modelling of nitrous oxide emissions from different nitrogen sources in mown grassland The process-based Pasture Simulation Model (PaSim 2.5) has been extended to simulate N2O production and emission from grassland caused by nitrogen inputs from different sources. The model was used to assess the influence of management on N2O emissions, such as the effect of shifts in the amount and timing of fertilizer application. Model performance has been tested against season-long field measurements at two different field sites. Simulation results agreed favourably with measured N2O emission and soil air concentrations, except during an extremely wet period at one site when grass growth was very poor. The results of short-term and long-term simulation runs demonstrated the potential of the model to estimate N2O emission factors under various conditions. During the first growing season, simulated emissions from organic fertilizers were lower than from synthetic fertilizers because more of the nitrogen was used to build up soil organic matter. The relative difference between the fertilizer types became larger with increasing application rate. The difference between fertilizer types was smaller at steady-state when higher soil organic matter content from repeated application of organic fertilizer over time led to enhanced mineralization and N2O emissions. The dependence of simulated N2O emissions on N input was close to linear at low, but non-linear at high fertilization rates. Emission factors calculated from the linear part of the curve suggested that the factors used in the current IPCC method underestimate the long-term effects of changes in fertilizer management. Furthermore the simulations show that N2O emissions caused by nitrogen inputs from the decomposition of harvest losses and from biological fixation in grassland can be considerable and should not be neglected in national emission inventories. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nutrient Cycling in Agroecosystems Springer Journals

Process-based modelling of nitrous oxide emissions from different nitrogen sources in mown grassland

Loading next page...
 
/lp/springer-journals/process-based-modelling-of-nitrous-oxide-emissions-from-different-1a55TZ6RmN
Publisher
Springer Journals
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Environment; Soil Science & Conservation
ISSN
1385-1314
eISSN
1573-0867
DOI
10.1023/A:1012694218748
Publisher site
See Article on Publisher Site

Abstract

The process-based Pasture Simulation Model (PaSim 2.5) has been extended to simulate N2O production and emission from grassland caused by nitrogen inputs from different sources. The model was used to assess the influence of management on N2O emissions, such as the effect of shifts in the amount and timing of fertilizer application. Model performance has been tested against season-long field measurements at two different field sites. Simulation results agreed favourably with measured N2O emission and soil air concentrations, except during an extremely wet period at one site when grass growth was very poor. The results of short-term and long-term simulation runs demonstrated the potential of the model to estimate N2O emission factors under various conditions. During the first growing season, simulated emissions from organic fertilizers were lower than from synthetic fertilizers because more of the nitrogen was used to build up soil organic matter. The relative difference between the fertilizer types became larger with increasing application rate. The difference between fertilizer types was smaller at steady-state when higher soil organic matter content from repeated application of organic fertilizer over time led to enhanced mineralization and N2O emissions. The dependence of simulated N2O emissions on N input was close to linear at low, but non-linear at high fertilization rates. Emission factors calculated from the linear part of the curve suggested that the factors used in the current IPCC method underestimate the long-term effects of changes in fertilizer management. Furthermore the simulations show that N2O emissions caused by nitrogen inputs from the decomposition of harvest losses and from biological fixation in grassland can be considerable and should not be neglected in national emission inventories.

Journal

Nutrient Cycling in AgroecosystemsSpringer Journals

Published: Oct 12, 2004

References

  • Sources of nitrous oxide in soils
    Bremner, JM

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off