Pricing policies for selling indivisible storable goods to strategic consumers

Pricing policies for selling indivisible storable goods to strategic consumers We study the dynamic pricing problem faced by a monopolistic retailer who sells a storable product to forward-looking consumers. In this framework, the two major pricing policies (or mechanisms) studied in the literature are the preannounced (commitment) pricing policy and the contingent (threat or history dependent) pricing policy. We analyse and compare these pricing policies in the setting where the good can be purchased along a finite time horizon in indivisible atomic quantities. First, we show that, given linear storage costs, the retailer can compute an optimal preannounced pricing policy in polynomial time by solving a dynamic program. Moreover, under such a policy, we show that consumers do not need to store units in order to anticipate price rises. Second, under the contingent pricing policy rather than the preannounced pricing mechanism, (i) prices could be lower, (ii) retailer revenues could be higher, and (iii) consumer surplus could be higher. This result is surprising, in that these three facts are in complete contrast to the case of a retailer selling divisible storable goods (Dudine et al. in Am Econ Rev 96(5):1706–1719, 2006). Third, we quantify exactly how much more profitable a contingent policy could be with respect to a preannounced policy. Specifically, for a market with N consumers, a contingent policy can produce a multiplicative factor of $$\Omega (\log N)$$ Ω ( log N ) more revenues than a preannounced policy, and this bound is tight. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Operations Research Springer Journals

Pricing policies for selling indivisible storable goods to strategic consumers

Loading next page...
 
/lp/springer-journals/pricing-policies-for-selling-indivisible-storable-goods-to-strategic-L0SJE49460
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Business and Management; Operations Research/Decision Theory; Combinatorics; Theory of Computation
ISSN
0254-5330
eISSN
1572-9338
D.O.I.
10.1007/s10479-018-2916-x
Publisher site
See Article on Publisher Site

Abstract

We study the dynamic pricing problem faced by a monopolistic retailer who sells a storable product to forward-looking consumers. In this framework, the two major pricing policies (or mechanisms) studied in the literature are the preannounced (commitment) pricing policy and the contingent (threat or history dependent) pricing policy. We analyse and compare these pricing policies in the setting where the good can be purchased along a finite time horizon in indivisible atomic quantities. First, we show that, given linear storage costs, the retailer can compute an optimal preannounced pricing policy in polynomial time by solving a dynamic program. Moreover, under such a policy, we show that consumers do not need to store units in order to anticipate price rises. Second, under the contingent pricing policy rather than the preannounced pricing mechanism, (i) prices could be lower, (ii) retailer revenues could be higher, and (iii) consumer surplus could be higher. This result is surprising, in that these three facts are in complete contrast to the case of a retailer selling divisible storable goods (Dudine et al. in Am Econ Rev 96(5):1706–1719, 2006). Third, we quantify exactly how much more profitable a contingent policy could be with respect to a preannounced policy. Specifically, for a market with N consumers, a contingent policy can produce a multiplicative factor of $$\Omega (\log N)$$ Ω ( log N ) more revenues than a preannounced policy, and this bound is tight.

Journal

Annals of Operations ResearchSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off