Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Preparation of biodegradable microspheres by anionic dispersion polymerization with PLA copolymeric dispersion stabilizer

Preparation of biodegradable microspheres by anionic dispersion polymerization with PLA... We prepared poly(d,l-lactide) (PLA) microspheres by anionic dispersion polymerization of d,l-lactide. The polymerization was carried out in xylene/heptane (1:2 in v/v) mixture solution at 368 K for 9 h, with poly(dodecyl methacrylate)-co-poly[α-methacryloxyethoxy-poly(l-lactide)] (PDMA-co-P(MA-PLLA)) synthesized in this study, as a dispersion stabilizer. The number-averaged diameter and diameter distribution (coefficient of variation) of obtained PLA microspheres ranged from 180 to 800 nm and 14–40%, respectively, depending on the preparation condition. Furthermore, the time courses of monomer conversion, particle diameter, and particle number were investigated to clarify the formation mechanism of microspheres with PDMA-co-P(MA-PLLA) as a dispersion stabilizer. From this experiment, we found that the aggregation of primary particles occurred in anionic dispersion polymerization, and the particle diameter of obtained PLA microspheres decreased with increasing PDMA-co-P(MA-PLLA) concentration. In conclusion, we clarified that PDMA-co-P(MA-PLLA) effectively contributed to the stability of primary particles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Colloid Polymer Science Springer Journals

Preparation of biodegradable microspheres by anionic dispersion polymerization with PLA copolymeric dispersion stabilizer

Loading next page...
 
/lp/springer-journals/preparation-of-biodegradable-microspheres-by-anionic-dispersion-O9C2xN6YTd

References (29)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Chemistry; Polymer Sciences; Soft and Granular Matter, Complex Fluids and Microfluidics; Characterization and Evaluation of Materials; Physical Chemistry; Food Science; Nanotechnology and Microengineering
ISSN
0303-402X
eISSN
1435-1536
DOI
10.1007/s00396-007-1701-1
Publisher site
See Article on Publisher Site

Abstract

We prepared poly(d,l-lactide) (PLA) microspheres by anionic dispersion polymerization of d,l-lactide. The polymerization was carried out in xylene/heptane (1:2 in v/v) mixture solution at 368 K for 9 h, with poly(dodecyl methacrylate)-co-poly[α-methacryloxyethoxy-poly(l-lactide)] (PDMA-co-P(MA-PLLA)) synthesized in this study, as a dispersion stabilizer. The number-averaged diameter and diameter distribution (coefficient of variation) of obtained PLA microspheres ranged from 180 to 800 nm and 14–40%, respectively, depending on the preparation condition. Furthermore, the time courses of monomer conversion, particle diameter, and particle number were investigated to clarify the formation mechanism of microspheres with PDMA-co-P(MA-PLLA) as a dispersion stabilizer. From this experiment, we found that the aggregation of primary particles occurred in anionic dispersion polymerization, and the particle diameter of obtained PLA microspheres decreased with increasing PDMA-co-P(MA-PLLA) concentration. In conclusion, we clarified that PDMA-co-P(MA-PLLA) effectively contributed to the stability of primary particles.

Journal

Colloid Polymer ScienceSpringer Journals

Published: Jul 13, 2007

There are no references for this article.