Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications

Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications Polyamines are aliphatic cations with multiple functions and are essential for life. Cellular polyamine levels are regulated by multiple pathways such as synthesis from amino acid precursors, cellular uptake mechanisms that salvage polyamines from diet and intestinal microorganisms, as well as stepwise degradation and efflux. Investigations using polyamine biosynthetic inhibitors indicate that alterations in cellular polyamine levels modulate normal and cancer cell growth. Studies using transgenic mice overexpressing polyamine biosynthetic enzymes support a role of polyamines in carcinogenesis. Many, if not all, signal transduction pathways intersect with polyamine biosynthetic pathways and the regulation of intracellular polyamine levels. Direct binding of polyamines to DNA and their ability to modulate DNA-protein interactions appear to be important in the molecular mechanisms of polyamine action in cell proliferation. Consistent with the role of polyamines as facilitators of cell growth, several studies have shown their ability to protect cells from apoptosis. However, polyamines also have a role in facilitating cell death. The basis of these diverse cellular responses is currently not known. Cell death response might be partly mediated by the production of hydrogen peroxide during polyamine catabolism. In addition, the ability of polyamines to alter DNA-protein and protein-protein interactions might be disruptive to cellular functions, when abnormally high levels are accumulated due to defects in polyamine catabolic or efflux pathways. A large body of data indicates that polyamine pathway can be a molecular target for therapeutic intervention in several types cancers. Inhibitors of biosynthesis, polyamine analogues as well as oligonucleotide/polyamine analogue combinations are promising drug candidates for chemoprevention and/or treatment of cancer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular and Molecular Life Sciences Springer Journals

Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications

Loading next page...
 
/lp/springer-journals/polyamines-in-cell-growth-and-cell-death-molecular-mechanisms-and-OyAy0POvaD
Publisher
Springer Journals
Copyright
Copyright © 2001 by Birkhäuser Verlag Basel,
Subject
Life Sciences; Cell Biology; Biomedicine, general; Life Sciences, general; Biochemistry, general
ISSN
1420-682X
eISSN
1420-9071
DOI
10.1007/PL00000852
pmid
11289306
Publisher site
See Article on Publisher Site

Abstract

Polyamines are aliphatic cations with multiple functions and are essential for life. Cellular polyamine levels are regulated by multiple pathways such as synthesis from amino acid precursors, cellular uptake mechanisms that salvage polyamines from diet and intestinal microorganisms, as well as stepwise degradation and efflux. Investigations using polyamine biosynthetic inhibitors indicate that alterations in cellular polyamine levels modulate normal and cancer cell growth. Studies using transgenic mice overexpressing polyamine biosynthetic enzymes support a role of polyamines in carcinogenesis. Many, if not all, signal transduction pathways intersect with polyamine biosynthetic pathways and the regulation of intracellular polyamine levels. Direct binding of polyamines to DNA and their ability to modulate DNA-protein interactions appear to be important in the molecular mechanisms of polyamine action in cell proliferation. Consistent with the role of polyamines as facilitators of cell growth, several studies have shown their ability to protect cells from apoptosis. However, polyamines also have a role in facilitating cell death. The basis of these diverse cellular responses is currently not known. Cell death response might be partly mediated by the production of hydrogen peroxide during polyamine catabolism. In addition, the ability of polyamines to alter DNA-protein and protein-protein interactions might be disruptive to cellular functions, when abnormally high levels are accumulated due to defects in polyamine catabolic or efflux pathways. A large body of data indicates that polyamine pathway can be a molecular target for therapeutic intervention in several types cancers. Inhibitors of biosynthesis, polyamine analogues as well as oligonucleotide/polyamine analogue combinations are promising drug candidates for chemoprevention and/or treatment of cancer.

Journal

Cellular and Molecular Life SciencesSpringer Journals

Published: Feb 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month