Playing Super Mario increases oculomotor inhibition and frontal eye field grey matter in older adults

Playing Super Mario increases oculomotor inhibition and frontal eye field grey matter in older... Aging is associated with cognitive decline and decreased capacity to inhibit distracting information. Video game training holds promise to increase inhibitory mechanisms in older adults. In the current study, we tested the impact of 3D-platform video game training on performance in an antisaccade task and on related changes in grey matter within the frontal eye fields (FEFs) of older adults. An experimental group (VID group) engaged in 3D-platform video game training over a period of 6 months, while an active control group was trained on piano lessons (MUS group), and a no-contact control group did not participate in any intervention (CON group). Increased performance in oculomotor inhibition, as measured by the antisaccade task, and increased grey matter in the right FEF was observed uniquely in the VID group. These results demonstrate that 3D-platform video game training can improve inhibitory control known to decline with age. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

Playing Super Mario increases oculomotor inhibition and frontal eye field grey matter in older adults

Loading next page...
 
/lp/springer-journals/playing-super-mario-increases-oculomotor-inhibition-and-frontal-eye-ElvyjO9RR5
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Biomedicine; Neurosciences; Neurology
ISSN
0014-4819
eISSN
1432-1106
D.O.I.
10.1007/s00221-018-5453-6
Publisher site
See Article on Publisher Site

Abstract

Aging is associated with cognitive decline and decreased capacity to inhibit distracting information. Video game training holds promise to increase inhibitory mechanisms in older adults. In the current study, we tested the impact of 3D-platform video game training on performance in an antisaccade task and on related changes in grey matter within the frontal eye fields (FEFs) of older adults. An experimental group (VID group) engaged in 3D-platform video game training over a period of 6 months, while an active control group was trained on piano lessons (MUS group), and a no-contact control group did not participate in any intervention (CON group). Increased performance in oculomotor inhibition, as measured by the antisaccade task, and increased grey matter in the right FEF was observed uniquely in the VID group. These results demonstrate that 3D-platform video game training can improve inhibitory control known to decline with age.

Journal

Experimental Brain ResearchSpringer Journals

Published: Dec 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off