Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Physics of solvation

Physics of solvation Calculations are presented of the energetics of an impurity (atom or ion) interacting with a fluid. Two possible configurations are considered: a surface state and a solvated state. For two distinct model problems which we consider (any classical fluid and superfluid helium) we find a common behaviour: the value of a dimensionless parameter λ determines the relative stability of the surface and solvated states. For λ greater (less) than 1.9, the sovated (surface) state is favored. A more realistic estimate for a classical fluid is λ ∼ 1. Predictions are made of a universal solvation behaviour derived from the law of corresponding states. Results are presented for the solvated fraction as a function of cluster radius and temperature. Quantum corrections and the kinetics of solvation are discussed briefly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Low Temperature Physics Springer Journals

Loading next page...
 
/lp/springer-journals/physics-of-solvation-MTRS2mzovw

References (26)

Publisher
Springer Journals
Copyright
Copyright
Subject
Physics; Condensed Matter Physics; Characterization and Evaluation of Materials; Magnetism, Magnetic Materials
ISSN
0022-2291
eISSN
1573-7357
DOI
10.1007/BF00754527
Publisher site
See Article on Publisher Site

Abstract

Calculations are presented of the energetics of an impurity (atom or ion) interacting with a fluid. Two possible configurations are considered: a surface state and a solvated state. For two distinct model problems which we consider (any classical fluid and superfluid helium) we find a common behaviour: the value of a dimensionless parameter λ determines the relative stability of the surface and solvated states. For λ greater (less) than 1.9, the sovated (surface) state is favored. A more realistic estimate for a classical fluid is λ ∼ 1. Predictions are made of a universal solvation behaviour derived from the law of corresponding states. Results are presented for the solvated fraction as a function of cluster radius and temperature. Quantum corrections and the kinetics of solvation are discussed briefly.

Journal

Journal of Low Temperature PhysicsSpringer Journals

Published: Nov 22, 2004

There are no references for this article.