Microbial nitrification is a key process in the nitrogen cycle in the continental shelf ecosystems. The genotype compositions and abundance of the ammonia monooxygenase gene, amoA, derived from ammonia-oxidizing archaea (AOA) and bacteria (AOB) in two size fractions (2–10 and 0.2–2 µm), were investigated in the East China Sea (ECS) in May 2008 using PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR). Four sites were selected across the continental shelf edge: continental shelf water (CSW), Kuroshio branch water (KBW), transition between CSW and KBW (TCSKB) and coastal KBW (CKBW). The gene copy numbers of AOA-amoA were higher than those of AOB-amoA in ECS. The relative abundance of amoA to the total 16S rRNA gene level reached approximately 15% in KBW and CKBW for the free-living fraction of AOA, whereas the level was less than 0.01% throughout ECS for the AOB. A cluster analysis of the AOA-amoA-DGGE band pattern showed distinct genotype compositions in CSW in both the size fractions and in the surface of the TCSKB and KBW. Sequences of the DGGE bands were assigned to two clades. One of the clades exclusively consisted of sequences derived from the 2–10-µm fraction. This study revealed that AOA-amoA abundance dominated over AOB-amoA throughout the ECS, whereas the genotype composition of AOA-amoA were distributed heterogeneously across the water masses. Additionally, this is the first report showing the distribution of AOA-amoA genotypes characteristic to particle-associated AOA in the offshore of the East China Sea.
Archives of Microbiology – Springer Journals
Published: Nov 16, 2017
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue