Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us?

Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor... At least six important factors that determine productivity in mass algal cultures have been identified. These are (1) the culture depth or optical cross section, (2) turbulence, (3) nutrient content and supply, (4) cultivation procedure, (5) biomass concentration and areal density, and (6) photo-acclimation. Since the efficient capturing of light energy relates to high productivities and efficiencies, all potential losses and inefficiencies need to be managed and eliminated. Photoinhibition could reduce areal productivities by up to 30% and more, where photoinhibition is the decline in photosynthetic rates at supra-optimal irradiancies. It is, however, unclear whether this occurs in high density and turbulent mass algal cultures. Using chlorophyll a fluorescence, it was possible to show how the maximum quantum efficiency of dark adapted cells (Φmax) decreased at midday conditions of high irradiancies. Neither photochemical (qP) nor, to a lesser extent, non-photochemical quenching (qN), could explain the midday depression. Using chlorophyll a fluorescence transient analyses it was shown that, although light absorption increased towards midday, the captured energy was essentially lost as heat dissipation. This was clearly shown in low-density cultures where the average light per cell was high, compared to denser cultures where the effects of high light exposure were significantly reduced. In low-density cultures, more than 60% of the reaction centres (RCs) became “silent”, meaning that they neither reduce QA, nor return their excitation energy to the antenna. At higher cell densities, losses due to photoinhibition and the number of “silent RCs” were much reduced. Elucidation of the relationship between active RCs and productivity should be a priority for optimising photobioreactor productivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Phycology Springer Journals

Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us?

Journal of Applied Phycology, Volume 19 (5) – Apr 4, 2007

Loading next page...
 
/lp/springer-journals/photosynthetic-characteristics-of-spirulina-platensis-grown-in-Y0eUKt5w0Q
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology
ISSN
0921-8971
eISSN
1573-5176
D.O.I.
10.1007/s10811-007-9172-9
Publisher site
See Article on Publisher Site

Abstract

At least six important factors that determine productivity in mass algal cultures have been identified. These are (1) the culture depth or optical cross section, (2) turbulence, (3) nutrient content and supply, (4) cultivation procedure, (5) biomass concentration and areal density, and (6) photo-acclimation. Since the efficient capturing of light energy relates to high productivities and efficiencies, all potential losses and inefficiencies need to be managed and eliminated. Photoinhibition could reduce areal productivities by up to 30% and more, where photoinhibition is the decline in photosynthetic rates at supra-optimal irradiancies. It is, however, unclear whether this occurs in high density and turbulent mass algal cultures. Using chlorophyll a fluorescence, it was possible to show how the maximum quantum efficiency of dark adapted cells (Φmax) decreased at midday conditions of high irradiancies. Neither photochemical (qP) nor, to a lesser extent, non-photochemical quenching (qN), could explain the midday depression. Using chlorophyll a fluorescence transient analyses it was shown that, although light absorption increased towards midday, the captured energy was essentially lost as heat dissipation. This was clearly shown in low-density cultures where the average light per cell was high, compared to denser cultures where the effects of high light exposure were significantly reduced. In low-density cultures, more than 60% of the reaction centres (RCs) became “silent”, meaning that they neither reduce QA, nor return their excitation energy to the antenna. At higher cell densities, losses due to photoinhibition and the number of “silent RCs” were much reduced. Elucidation of the relationship between active RCs and productivity should be a priority for optimising photobioreactor productivity.

Journal

Journal of Applied PhycologySpringer Journals

Published: Apr 4, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off