Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand

Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing... Measurements of photosynthesis at saturating irradiance and CO2 partial pressure, A max, “adjusted” normalised difference vegetation index, R aNDVI, and photochemical reflectance index, R PRI, were made on trees sampled along a soil chronosequence to investigate the relationship between carbon uptake and ecosystem development in relation to nutrient availability. Measurements were made on the three most dominant species at six sites along the sequence in South Westland, New Zealand with soil age ranging from <6 to 120,000 years resulting from the retreat of the Franz Josef glacier. The decrease in soil phosphorus availability with increasing soil age and high soil nitrogen availability at the two youngest sites, due to the presence of a nitrogen-fixing species, provided marked differences in nutrient availability. Mean A max was high at the two youngest sites, then decreased markedly with increasing site age. Analysis of the data for individual species within sites revealed separation of groups of species in the response of A max to N m and P m, suggesting complex interactions between the two nutrients. There were strong linear relationships for leaf-level R aNDVI and R PRI with A max, at high irradiance, showing that measurements of reflectance indices can be used to estimate A max for foliage with a range in morphology and nutrient concentrations. Notwithstanding the change in species composition from angiosperms to conifers with increasing site age, the presence of nitrogen-fixing species, the variability in foliage morphology from flat leaves to imbricate scales and a wide range in foliar nitrogen and phosphorus concentrations, there were strong positive linear relationships between site average A max and foliage nitrogen, N m, and phosphorus, P m, concentrations on a foliage mass basis. The results provide insights to interpret the regulation of photosynthesis across natural ecosystems with marked gradients in nitrogen and phosphorus availability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oecologia Springer Journals

Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand

Loading next page...
 
/lp/springer-journals/photosynthesis-and-reflectance-indices-for-rainforest-species-in-rN0GAs8jSP
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Life Sciences; Plant Sciences ; Ecology
ISSN
0029-8549
eISSN
1432-1939
DOI
10.1007/s00442-005-0068-6
Publisher site
See Article on Publisher Site

Abstract

Measurements of photosynthesis at saturating irradiance and CO2 partial pressure, A max, “adjusted” normalised difference vegetation index, R aNDVI, and photochemical reflectance index, R PRI, were made on trees sampled along a soil chronosequence to investigate the relationship between carbon uptake and ecosystem development in relation to nutrient availability. Measurements were made on the three most dominant species at six sites along the sequence in South Westland, New Zealand with soil age ranging from <6 to 120,000 years resulting from the retreat of the Franz Josef glacier. The decrease in soil phosphorus availability with increasing soil age and high soil nitrogen availability at the two youngest sites, due to the presence of a nitrogen-fixing species, provided marked differences in nutrient availability. Mean A max was high at the two youngest sites, then decreased markedly with increasing site age. Analysis of the data for individual species within sites revealed separation of groups of species in the response of A max to N m and P m, suggesting complex interactions between the two nutrients. There were strong linear relationships for leaf-level R aNDVI and R PRI with A max, at high irradiance, showing that measurements of reflectance indices can be used to estimate A max for foliage with a range in morphology and nutrient concentrations. Notwithstanding the change in species composition from angiosperms to conifers with increasing site age, the presence of nitrogen-fixing species, the variability in foliage morphology from flat leaves to imbricate scales and a wide range in foliar nitrogen and phosphorus concentrations, there were strong positive linear relationships between site average A max and foliage nitrogen, N m, and phosphorus, P m, concentrations on a foliage mass basis. The results provide insights to interpret the regulation of photosynthesis across natural ecosystems with marked gradients in nitrogen and phosphorus availability.

Journal

OecologiaSpringer Journals

Published: Apr 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off