Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Phenotypic and phylogenetic studies of benthic mat-forming cyanobacteria on the NW Svalbard

Phenotypic and phylogenetic studies of benthic mat-forming cyanobacteria on the NW Svalbard Cold habitats are diminishing as a result of climate change, while at the same time little is known of the diversity or biogeography of microbes that thrive in such environments. Furthermore, despite the evident importance of cyanobacteria in polar areas, there are hardly any studies focusing on the phylogenetic relationship between the Arctic and Antarctic cyanobacteria. Here, we described cyanobacterial mats as well as epi- and endoliths collected from shallow streams and rocks, respectively, in the northwestern part of Svalbard. Thirteen populations were identified and characterized by employing morphological and molecular (16S rRNA gene sequences) techniques. Our results were compared to analogous information (available from the GenBank) and related to organisms from similar environments located in the Northern and Southern Hemispheres. In general, the morphological and molecular characterizations complemented each other, and the identified Arctic populations belonged to the following orders: Oscillatoriales (6), Nostocales (6), and Chroococcales (1). Twelve of the identified polar populations showed high similarity (94–99% 16S rRNA gene sequence) when compared to other Arctic and Antarctic cyanobacteria. Mat builder Phormidium autumnale shared only 88% similarity with sequences deposited in the GenBank. Our results demonstrate remarkable similarities of microbial life of Svalbard to that in Antarctica and the High Himalayas. Our findings are a starting point for future comparative research of the benthic as well as endolithic populations of cyanobacteria from the Arctic and Antarctica that will yield new insights into the cold and dry limits of life on Earth. They imply global distributions of the low-temperature cyanobacterial populations throughout the cold terrestrial biosphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polar Biology Springer Journals

Phenotypic and phylogenetic studies of benthic mat-forming cyanobacteria on the NW Svalbard

Polar Biology , Volume 40 (8) – Feb 17, 2017

Loading next page...
 
/lp/springer-journals/phenotypic-and-phylogenetic-studies-of-benthic-mat-forming-MyCshkKp0X

References (70)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Ecology; Oceanography; Microbiology; Plant Sciences; Zoology
ISSN
0722-4060
eISSN
1432-2056
DOI
10.1007/s00300-017-2083-6
Publisher site
See Article on Publisher Site

Abstract

Cold habitats are diminishing as a result of climate change, while at the same time little is known of the diversity or biogeography of microbes that thrive in such environments. Furthermore, despite the evident importance of cyanobacteria in polar areas, there are hardly any studies focusing on the phylogenetic relationship between the Arctic and Antarctic cyanobacteria. Here, we described cyanobacterial mats as well as epi- and endoliths collected from shallow streams and rocks, respectively, in the northwestern part of Svalbard. Thirteen populations were identified and characterized by employing morphological and molecular (16S rRNA gene sequences) techniques. Our results were compared to analogous information (available from the GenBank) and related to organisms from similar environments located in the Northern and Southern Hemispheres. In general, the morphological and molecular characterizations complemented each other, and the identified Arctic populations belonged to the following orders: Oscillatoriales (6), Nostocales (6), and Chroococcales (1). Twelve of the identified polar populations showed high similarity (94–99% 16S rRNA gene sequence) when compared to other Arctic and Antarctic cyanobacteria. Mat builder Phormidium autumnale shared only 88% similarity with sequences deposited in the GenBank. Our results demonstrate remarkable similarities of microbial life of Svalbard to that in Antarctica and the High Himalayas. Our findings are a starting point for future comparative research of the benthic as well as endolithic populations of cyanobacteria from the Arctic and Antarctica that will yield new insights into the cold and dry limits of life on Earth. They imply global distributions of the low-temperature cyanobacterial populations throughout the cold terrestrial biosphere.

Journal

Polar BiologySpringer Journals

Published: Feb 17, 2017

There are no references for this article.