Persistence of soil organic matter as an ecosystem property

Persistence of soil organic matter as an ecosystem property Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming. Understanding soil biogeochemistry is essential to the stewardship of ecosystem services provided by soils, such as soil fertility (for food, fibre and fuel production), water quality, resistance to erosion and climate mitigation through reduced feedbacks to climate change. Soils store at least three times as much carbon (in SOM) as is found in either the atmosphere or in living plants . This major pool of organic carbon is sensitive to changes in climate or local environment, but how and on what timescale will it respond to such changes? The feedbacks between soil organic carbon and climate are not http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Springer Journals

Loading next page...
 
/lp/springer-journals/persistence-of-soil-organic-matter-as-an-ecosystem-property-dvo1idq1Sm
Publisher
Springer Journals
Copyright
Copyright © 2011 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
ISSN
0028-0836
eISSN
1476-4687
DOI
10.1038/nature10386
Publisher site
See Article on Publisher Site

Abstract

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming. Understanding soil biogeochemistry is essential to the stewardship of ecosystem services provided by soils, such as soil fertility (for food, fibre and fuel production), water quality, resistance to erosion and climate mitigation through reduced feedbacks to climate change. Soils store at least three times as much carbon (in SOM) as is found in either the atmosphere or in living plants . This major pool of organic carbon is sensitive to changes in climate or local environment, but how and on what timescale will it respond to such changes? The feedbacks between soil organic carbon and climate are not

Journal

NatureSpringer Journals

Published: Oct 5, 2011

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off