Perinatal exposure to polychlorinated biphenyls differentially affects cerebellar development and motor functions in male and female rat neonates

Perinatal exposure to polychlorinated biphenyls differentially affects cerebellar development and... Perinatal exposure to polychlorinated biphenyls (PCBs) interacts with genetics and impacts the course of the central nervous system (CNS) development in both humans and animals. To test the hypothesis that the neurobehavioral impairments, and specifically motor dysfunctions following perinatal PCB exposure in rats are associated with changes in a specific brain region, the cerebellum, we compared neurodevelopment, motor behavior, cerebellar structure, and protein expression in rat neonates exposed to the PCB mixture Aroclor 1254 (A1254, 10.0 mg/kg/day) from gestational day 11 until postnatal day (P) 21 with that of controls. Body mass of PCB-exposed pups was not affected at birth, but was significantly lower than that of controls between birth and weaning; by P21 the difference was greater in females than in males. A1254 exposure delayed ear unfolding and impaired performance on the following behavioral tests: (1) righting response on P3-P6; (2) negative geotaxis on P5-P7; (3) startle response on P10-P12; and (4) a rotorod on P12, with PCB-male pups more severely affected than female. Changes in the behavior of PCB pups were associated with changes in cerebellar structure and protein expression. Cerebellar mass was more reduced in PCB-male than PCB-female pups. Analysis of selected cerebellar proteins revealed an increase in GFAP expression, greater in male than in female, and a decrease in L1 expression in both sexes. These results suggest that PCB exposure affects behavior and cerebellar development differently in male and female rat neonates, with greater effects in males. Further studies of neonatal PCB exposure will establish whether the environmental pollutants can contribute to the sex-related preponderance of certain neuropsychiatric disorders. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Cerebellum Springer Journals

Perinatal exposure to polychlorinated biphenyls differentially affects cerebellar development and motor functions in male and female rat neonates

The Cerebellum, Volume 4 (2) – Feb 12, 2008

Loading next page...
 
/lp/springer-journals/perinatal-exposure-to-polychlorinated-biphenyls-differentially-affects-ECAyI7i0TP
Publisher
Springer Journals
Copyright
Copyright © 2005 by Taylor & Francis Group Ltd
Subject
Biomedicine; Neurosciences; Neurobiology; Neurology
ISSN
1473-4222
eISSN
1473-4230
DOI
10.1080/14734220510007860
Publisher site
See Article on Publisher Site

Abstract

Perinatal exposure to polychlorinated biphenyls (PCBs) interacts with genetics and impacts the course of the central nervous system (CNS) development in both humans and animals. To test the hypothesis that the neurobehavioral impairments, and specifically motor dysfunctions following perinatal PCB exposure in rats are associated with changes in a specific brain region, the cerebellum, we compared neurodevelopment, motor behavior, cerebellar structure, and protein expression in rat neonates exposed to the PCB mixture Aroclor 1254 (A1254, 10.0 mg/kg/day) from gestational day 11 until postnatal day (P) 21 with that of controls. Body mass of PCB-exposed pups was not affected at birth, but was significantly lower than that of controls between birth and weaning; by P21 the difference was greater in females than in males. A1254 exposure delayed ear unfolding and impaired performance on the following behavioral tests: (1) righting response on P3-P6; (2) negative geotaxis on P5-P7; (3) startle response on P10-P12; and (4) a rotorod on P12, with PCB-male pups more severely affected than female. Changes in the behavior of PCB pups were associated with changes in cerebellar structure and protein expression. Cerebellar mass was more reduced in PCB-male than PCB-female pups. Analysis of selected cerebellar proteins revealed an increase in GFAP expression, greater in male than in female, and a decrease in L1 expression in both sexes. These results suggest that PCB exposure affects behavior and cerebellar development differently in male and female rat neonates, with greater effects in males. Further studies of neonatal PCB exposure will establish whether the environmental pollutants can contribute to the sex-related preponderance of certain neuropsychiatric disorders.

Journal

The CerebellumSpringer Journals

Published: Feb 12, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off