Performance of PIV and PTV for granular flow measurements

Performance of PIV and PTV for granular flow measurements As tools and techniques to measure experimental granular flows become increasingly sophisticated, there is a need to rigorously assess the validity of the approaches used. This paper critically assesses the performance of particle image velocimetry (PIV) and particle tracking velocimetry (PTV) for the measurement of granular flow properties. After a brief review of the PIV and PTV techniques, we describe the most common sources of error arising from the applications of these two methods. For PTV, a series of controlled experiments of a circular motion is used to illustrate the errors associated with the particle centroid uncertainties and the linear approximation of particle trajectories. The influence of these errors is then examined in experiments on dry monodisperse granular flows down an inclined chute geometry. The results are compared to those from PIV analysis in which errors are influenced by the size of the interrogation region. While velocity profiles estimated by the two techniques show strong agreement, second order statistics, e.g. the granular temperature, display very different profiles. We show how the choice of the sampling interval, or frame rate, affects both the magnitude of granular temperature and the profile shape determined in the case of PTV. In addition, the determined magnitudes of granular temperature from PIV tends to be considerably lower when directly measured or largely overestimated when theoretically scaled than those of PTV for the same tests, though the shape of the profiles is less sensitive to frame rate. We finally present solid concentration profiles obtained at the sidewalls and and examine their relationship to the determined shear rate and granular temperature profiles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Granular Matter Springer Journals

Performance of PIV and PTV for granular flow measurements

Loading next page...
 
/lp/springer-journals/performance-of-piv-and-ptv-for-granular-flow-measurements-TvYUWYm0x8
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Physics; Soft and Granular Matter, Complex Fluids and Microfluidics; Engineering Fluid Dynamics; Materials Science, general; Geoengineering, Foundations, Hydraulics; Industrial Chemistry/Chemical Engineering; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
1434-5021
eISSN
1434-7636
D.O.I.
10.1007/s10035-017-0730-9
Publisher site
See Article on Publisher Site

Abstract

As tools and techniques to measure experimental granular flows become increasingly sophisticated, there is a need to rigorously assess the validity of the approaches used. This paper critically assesses the performance of particle image velocimetry (PIV) and particle tracking velocimetry (PTV) for the measurement of granular flow properties. After a brief review of the PIV and PTV techniques, we describe the most common sources of error arising from the applications of these two methods. For PTV, a series of controlled experiments of a circular motion is used to illustrate the errors associated with the particle centroid uncertainties and the linear approximation of particle trajectories. The influence of these errors is then examined in experiments on dry monodisperse granular flows down an inclined chute geometry. The results are compared to those from PIV analysis in which errors are influenced by the size of the interrogation region. While velocity profiles estimated by the two techniques show strong agreement, second order statistics, e.g. the granular temperature, display very different profiles. We show how the choice of the sampling interval, or frame rate, affects both the magnitude of granular temperature and the profile shape determined in the case of PTV. In addition, the determined magnitudes of granular temperature from PIV tends to be considerably lower when directly measured or largely overestimated when theoretically scaled than those of PTV for the same tests, though the shape of the profiles is less sensitive to frame rate. We finally present solid concentration profiles obtained at the sidewalls and and examine their relationship to the determined shear rate and granular temperature profiles.

Journal

Granular MatterSpringer Journals

Published: May 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off