Performance Estimation of Fault-prone Infrastructure-as-a-Service Cloud Computing Systems and their Cost-aware Optimal Performance Determination

Performance Estimation of Fault-prone Infrastructure-as-a-Service Cloud Computing Systems and... The cloud computing paradigm enables elastic resources to be scaled at run time satisfy customers’ demand. Cloud computing provisions on-demand service to users following a pay-per-use pattern. This novel paradigm enables cloud users or tenant users to afford computational resources in the form of virtual machines (VMs) as utilities, just like electricity, instead of paying for and building computing infrastructures by their own. Performance estimation of clouds is one of key research challenges and draws great research interests. For this purpose, we develop a comprehensive stochastic framework for estimation of performance of IaaS clouds with fault-prone instantiation and retrials of faulty instantiation. Our proposed approach is capable of analyzing several performance metrics under variable system conditions. A comparative study based on an actual campus cloud is carried out and its corresponding confidence interval validation suggests the correctness and accuracy of theoretical performance results. To optimize cloud performance, we also formulate the developed stochastic model into an optimal responsiveness determination problem with the aim of minimizing averaged system responsiveness with rejection rate and system cost constraints. An intelligent algorithm is introduced to obtain near-optimal solutions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mobile Networks and Applications Springer Journals

Performance Estimation of Fault-prone Infrastructure-as-a-Service Cloud Computing Systems and their Cost-aware Optimal Performance Determination

Loading next page...
 
/lp/springer-journals/performance-estimation-of-fault-prone-infrastructure-as-a-service-gdDV1cSbSS
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Computer Communication Networks; Electrical Engineering; IT in Business
ISSN
1383-469X
eISSN
1572-8153
D.O.I.
10.1007/s11036-017-0848-3
Publisher site
See Article on Publisher Site

Abstract

The cloud computing paradigm enables elastic resources to be scaled at run time satisfy customers’ demand. Cloud computing provisions on-demand service to users following a pay-per-use pattern. This novel paradigm enables cloud users or tenant users to afford computational resources in the form of virtual machines (VMs) as utilities, just like electricity, instead of paying for and building computing infrastructures by their own. Performance estimation of clouds is one of key research challenges and draws great research interests. For this purpose, we develop a comprehensive stochastic framework for estimation of performance of IaaS clouds with fault-prone instantiation and retrials of faulty instantiation. Our proposed approach is capable of analyzing several performance metrics under variable system conditions. A comparative study based on an actual campus cloud is carried out and its corresponding confidence interval validation suggests the correctness and accuracy of theoretical performance results. To optimize cloud performance, we also formulate the developed stochastic model into an optimal responsiveness determination problem with the aim of minimizing averaged system responsiveness with rejection rate and system cost constraints. An intelligent algorithm is introduced to obtain near-optimal solutions.

Journal

Mobile Networks and ApplicationsSpringer Journals

Published: Apr 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off