Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause

Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause The metabolic abnormalities of type 2 diabetes can be reversed reproducibly by bariatric surgery. By quantifying the major pathophysiological abnormalities in insulin secretion and insulin action after surgery, the sequence of events leading to restoration of normal metabolism can be defined. Liver fat levels fall within days and normal hepatic insulin sensitivity is restored. Simultaneously, plasma glucose levels return towards normal. Insulin sensitivity of muscle remains abnormal, at least over the weeks and months after bariatric surgery. The effect of the surgery is explicable solely in terms of energy restriction. By combining this information with prospective observation of the changes immediately preceding the onset of type 2 diabetes, a clear picture emerges. Insulin resistance in muscle, caused by inherited and environmental factors, facilitates the development of fatty liver during positive energy balance. Once established, the increased insulin secretion required to maintain plasma glucose levels will further increase liver fat deposition. Fatty liver causes resistance to insulin suppression of hepatic glucose output as well as raised plasma triacylglycerol. Exposure of beta cells to increased levels of fatty acids, derived from circulating and locally deposited triacylglycerol, suppresses glucose-mediated insulin secretion. This is reversible initially, but eventually becomes permanent. The essential time sequence of the pathogenesis of type 2 diabetes is now evident. Muscle insulin resistance determines the rate at which fatty liver progresses, and ectopic fat deposition in liver and islet underlies the related dynamic defects of hepatic insulin resistance and beta cell dysfunction. These defects are capable of dramatic reversal under hypoenergetic feeding conditions, completely in early diabetes and to a worthwhile extent in more established disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Diabetologia Springer Journals

Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause

Diabetologia, Volume 51 (10) – Oct 1, 2008

Loading next page...
 
/lp/springer-journals/pathogenesis-of-type-2-diabetes-tracing-the-reverse-route-from-cure-to-3c6X71cmOb
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Medicine & Public Health; Human Physiology ; Metabolic Diseases ; Internal Medicine
ISSN
0012-186X
eISSN
1432-0428
D.O.I.
10.1007/s00125-008-1116-7
Publisher site
See Article on Publisher Site

Abstract

The metabolic abnormalities of type 2 diabetes can be reversed reproducibly by bariatric surgery. By quantifying the major pathophysiological abnormalities in insulin secretion and insulin action after surgery, the sequence of events leading to restoration of normal metabolism can be defined. Liver fat levels fall within days and normal hepatic insulin sensitivity is restored. Simultaneously, plasma glucose levels return towards normal. Insulin sensitivity of muscle remains abnormal, at least over the weeks and months after bariatric surgery. The effect of the surgery is explicable solely in terms of energy restriction. By combining this information with prospective observation of the changes immediately preceding the onset of type 2 diabetes, a clear picture emerges. Insulin resistance in muscle, caused by inherited and environmental factors, facilitates the development of fatty liver during positive energy balance. Once established, the increased insulin secretion required to maintain plasma glucose levels will further increase liver fat deposition. Fatty liver causes resistance to insulin suppression of hepatic glucose output as well as raised plasma triacylglycerol. Exposure of beta cells to increased levels of fatty acids, derived from circulating and locally deposited triacylglycerol, suppresses glucose-mediated insulin secretion. This is reversible initially, but eventually becomes permanent. The essential time sequence of the pathogenesis of type 2 diabetes is now evident. Muscle insulin resistance determines the rate at which fatty liver progresses, and ectopic fat deposition in liver and islet underlies the related dynamic defects of hepatic insulin resistance and beta cell dysfunction. These defects are capable of dramatic reversal under hypoenergetic feeding conditions, completely in early diabetes and to a worthwhile extent in more established disease.

Journal

DiabetologiaSpringer Journals

Published: Oct 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off