On the use of the finite-time Lyapunov exponent to reveal complex flow physics in the wake of a mechanical valve

On the use of the finite-time Lyapunov exponent to reveal complex flow physics in the wake of a... The finite-time Lyapunov exponent (FTLE) is a popular tool to extract characteristic features of flows that cannot be revealed by other criteria. However, even if the computational cost of computing particle trajectories in space and time has been reduced and optimized in a considerable number of works, the main challenge probably consists in increasing the spatial resolution of Lagrangian coherent structures locally, i.e., where the FTLE field reaches its maximum values. On the other hand, most of experimental data are obtained in planes so that the FTLE field is computed without the out-of-plane particle movements. To investigate which physics the FTLE can capture in flows that are highly three dimensional, the criterion is computed from high-speed stereoscopic particle image velocimetry measurements of the pulsatile flow that develops behind a bi-leaflet mechanical heart valve. The similitude is based on the Womersley number, and experiments are performed for a lower Reynolds number than the physiologic value to obtain sufficiently resolved data in space and time. It is found that the vortex shedding is well captured and that its development can be decomposed into four successive phases. The longest phase occurs near the peak flow rate and exhibits a break of symmetry similar to the one appearing in the wakes of two side-by-side cylinders in the regime when the separation between the cylinders is of the order of their diameter. Specifically, a vortex street with alternating vortex sheddings is observed in a narrow wake behind one of the leaflets, whereas single large vortices develop inside a wide wake downstream of the other leaflet. It appears that these patterns are difficult or even impossible to discern with classical Eulerian vortex identification techniques. The Strouhal numbers of vortex-shedding frequencies, obtained from continuous wavelet transforms and based on the apparent height of the leaflets, are also close to those found in the flow behind two cylinders. By invoking the Taylor hypothesis, an approximate three-dimensional reconstruction of the flow can be obtained and a three-dimensional FTLE field is deduced, which provides a very detailed view of the vortex structures that form and develop in the wakes of the leaflets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On the use of the finite-time Lyapunov exponent to reveal complex flow physics in the wake of a mechanical valve

Loading next page...
1
 
/lp/springer-journals/on-the-use-of-the-finite-time-lyapunov-exponent-to-reveal-complex-flow-h3iMJxHODi
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1814-5
Publisher site
See Article on Publisher Site

Abstract

The finite-time Lyapunov exponent (FTLE) is a popular tool to extract characteristic features of flows that cannot be revealed by other criteria. However, even if the computational cost of computing particle trajectories in space and time has been reduced and optimized in a considerable number of works, the main challenge probably consists in increasing the spatial resolution of Lagrangian coherent structures locally, i.e., where the FTLE field reaches its maximum values. On the other hand, most of experimental data are obtained in planes so that the FTLE field is computed without the out-of-plane particle movements. To investigate which physics the FTLE can capture in flows that are highly three dimensional, the criterion is computed from high-speed stereoscopic particle image velocimetry measurements of the pulsatile flow that develops behind a bi-leaflet mechanical heart valve. The similitude is based on the Womersley number, and experiments are performed for a lower Reynolds number than the physiologic value to obtain sufficiently resolved data in space and time. It is found that the vortex shedding is well captured and that its development can be decomposed into four successive phases. The longest phase occurs near the peak flow rate and exhibits a break of symmetry similar to the one appearing in the wakes of two side-by-side cylinders in the regime when the separation between the cylinders is of the order of their diameter. Specifically, a vortex street with alternating vortex sheddings is observed in a narrow wake behind one of the leaflets, whereas single large vortices develop inside a wide wake downstream of the other leaflet. It appears that these patterns are difficult or even impossible to discern with classical Eulerian vortex identification techniques. The Strouhal numbers of vortex-shedding frequencies, obtained from continuous wavelet transforms and based on the apparent height of the leaflets, are also close to those found in the flow behind two cylinders. By invoking the Taylor hypothesis, an approximate three-dimensional reconstruction of the flow can be obtained and a three-dimensional FTLE field is deduced, which provides a very detailed view of the vortex structures that form and develop in the wakes of the leaflets.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 4, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial