Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper is motivated by the question whether there is a nice structure theory of finitely generated modules over the Iwasawa algebra, i.e. the completed group algebra, Λ of a p-adic analytic group G. For G without any p-torsion element we prove that Λ is an Auslander regular ring. This result enables us to give a good definition of the notion of a pseudo-nullΛ-module. This is classical when G=ℤ k p for some integer k≥1, but was previously unknown in the non-commutative case. Then the category of Λ-modules up to pseudo-isomorphisms is studied and we obtain a weak structure theorem for the ℤ p -torsion part of a finitely generated Λ-module. We also prove a local duality theorem and a version of Auslander-Buchsbaum equality. The arithmetic applications to the Iwasawa theory of abelian varieties are published elsewhere.
Journal of the European Mathematical Society – Springer Journals
Published: Sep 1, 2002
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.