Access the full text.
Sign up today, get DeepDyve free for 14 days.
Given a real-valued function a(x) which is locally integrable in the sense of Lebesgue over R≥0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}_{\ge 0}$$\end{document}, we obtain Tauberian conditions for the convergence of the integral ∫0∞a(t)dt\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\int _{0}^{\infty }a(t)\,dt$$\end{document} out of the weighted mean summability. Furthermore, we discuss summability of improper integrals via iterations of weighted means and provide corresponding Tauberian theorems.
The Journal of Analysis – Springer Journals
Published: Sep 21, 2022
Keywords: Weighted mean summability of integrals; Lebesgue integral; Improper integrals over R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}_{\ge 0}$$\end{document}; Tauberian conditions; Iterated weighted means; Forward and backward differences; 40A10; 40C10; 40E05; 26D15
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.