Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On Lp→Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p\rightarrow L^q$$\end{document} boundedness of the twisted convolution operators

On Lp→Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}... We provide conditions for the boundedness of the twisted convolution operator T:f→f×g\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$T : f \rightarrow f \times g$$\end{document} from Lp(Cn)→Lr(Cn)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^p({\mathbb {C}}^n) \rightarrow L^r({\mathbb {C}}^n)$$\end{document} for g∈Lq(Cn)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$g \in L^q({\mathbb {C}}^n)$$\end{document}. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Analysis Springer Journals

On Lp→Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p\rightarrow L^q$$\end{document} boundedness of the twisted convolution operators

The Journal of Analysis , Volume OnlineFirst – Sep 5, 2022

Loading next page...
 
/lp/springer-journals/on-lp-lq-documentclass-12pt-minimal-usepackage-amsmath-usepackage-epvtRM1cJT
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to The Forum D’Analystes 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0971-3611
eISSN
2367-2501
DOI
10.1007/s41478-022-00487-x
Publisher site
See Article on Publisher Site

Abstract

We provide conditions for the boundedness of the twisted convolution operator T:f→f×g\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$T : f \rightarrow f \times g$$\end{document} from Lp(Cn)→Lr(Cn)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^p({\mathbb {C}}^n) \rightarrow L^r({\mathbb {C}}^n)$$\end{document} for g∈Lq(Cn)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$g \in L^q({\mathbb {C}}^n)$$\end{document}.

Journal

The Journal of AnalysisSpringer Journals

Published: Sep 5, 2022

Keywords: Twisted convolution; Lp-Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p-L^q$$\end{document} boundedness; Young’s inequality; Primary 44A35; 44A15; Secondary 42B10; 42B20

References