Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On fault-tolerant design of Exclusive-OR gates in QCA

On fault-tolerant design of Exclusive-OR gates in QCA Design paradigms of logic circuits with quantum-dot cellular automata (QCA) have been extensively studied in the recent past. Unfortunately, due to the lack of mature fabrication support, QCA-based circuits often suffer from various types of manufacturing defects and variations and, therefore, are unreliable and error-prone. QCA-based exclusive-OR (XOR) gates are frequently used in the construction of several computing subsystems such as adders, linear feedback shift registers, parity generators and checkers. However, none of the existing designs for QCA XOR gates have considered the issue of ensuring fault-tolerance. Simulation results also show that these designs can hardly tolerate any fault. We investigate the applicability of various existing fault-tolerant schemes such as triple modular redundancy, NAND multiplexing and majority multiplexing in the context of practical realization of QCA XOR gate. Our investigations reveal that these techniques incur prohibitively large area and delay and hence, they are unsuitable for practical scenarios. We propose here realistic designs of QCA XOR gates (in terms of area and delay) with significantly high fault-tolerance against all types of cell misplacement defects such as cell omission, cell displacement, cell misalignment and extra/additional cell deposition. Furthermore, the absence of any crossing in the proposed designs facilitates low-cost fabrication of such systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Computational Electronics Springer Journals

On fault-tolerant design of Exclusive-OR gates in QCA

Loading next page...
 
/lp/springer-journals/on-fault-tolerant-design-of-exclusive-or-gates-in-qca-MFEY35M89l

References (47)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Mathematical and Computational Engineering; Electrical Engineering; Theoretical, Mathematical and Computational Physics; Optical and Electronic Materials; Mechanical Engineering
ISSN
1569-8025
eISSN
1572-8137
DOI
10.1007/s10825-017-1022-7
Publisher site
See Article on Publisher Site

Abstract

Design paradigms of logic circuits with quantum-dot cellular automata (QCA) have been extensively studied in the recent past. Unfortunately, due to the lack of mature fabrication support, QCA-based circuits often suffer from various types of manufacturing defects and variations and, therefore, are unreliable and error-prone. QCA-based exclusive-OR (XOR) gates are frequently used in the construction of several computing subsystems such as adders, linear feedback shift registers, parity generators and checkers. However, none of the existing designs for QCA XOR gates have considered the issue of ensuring fault-tolerance. Simulation results also show that these designs can hardly tolerate any fault. We investigate the applicability of various existing fault-tolerant schemes such as triple modular redundancy, NAND multiplexing and majority multiplexing in the context of practical realization of QCA XOR gate. Our investigations reveal that these techniques incur prohibitively large area and delay and hence, they are unsuitable for practical scenarios. We propose here realistic designs of QCA XOR gates (in terms of area and delay) with significantly high fault-tolerance against all types of cell misplacement defects such as cell omission, cell displacement, cell misalignment and extra/additional cell deposition. Furthermore, the absence of any crossing in the proposed designs facilitates low-cost fabrication of such systems.

Journal

Journal of Computational ElectronicsSpringer Journals

Published: Jun 17, 2017

There are no references for this article.