Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells

Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells Nurr1 is a transcription factor that is expressed in the embryonic ventral midbrain and is critical for the development of dopamine (DA) neurons. It belongs to the conserved family of nuclear receptors but lacks an identified ligand and is therefore referred to as an orphan receptor. Recent structural studies have indicated that Nurr1 belongs to a class of ligand-independent nuclear receptors that are unable to bind cognate ligands. However, Nurr1 can promote signaling via its heterodimerization partner, the retinoid X receptor (RXR). RXR ligands can promote the survival of DA neurons via a process that depends on Nurr1–RXR heterodimers. In developing DA cells, Nurr1 is required for the expression of several genes important for DA synthesis and function. However, Nurr1 is probably also important for the maintenance of adult DA neurons and plays additional less-well-elucidated roles in other regions of the central nervous system and in peripheral tissues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell and Tissue Research Springer Journals

Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells

Loading next page...
 
/lp/springer-journals/nurr1-an-orphan-nuclear-receptor-with-essential-functions-in-oK29Y6IXK2
Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Biomedicine; Human Genetics; Proteomics; Molecular Medicine
ISSN
0302-766X
eISSN
1432-0878
DOI
10.1007/s00441-004-0974-7
Publisher site
See Article on Publisher Site

Abstract

Nurr1 is a transcription factor that is expressed in the embryonic ventral midbrain and is critical for the development of dopamine (DA) neurons. It belongs to the conserved family of nuclear receptors but lacks an identified ligand and is therefore referred to as an orphan receptor. Recent structural studies have indicated that Nurr1 belongs to a class of ligand-independent nuclear receptors that are unable to bind cognate ligands. However, Nurr1 can promote signaling via its heterodimerization partner, the retinoid X receptor (RXR). RXR ligands can promote the survival of DA neurons via a process that depends on Nurr1–RXR heterodimers. In developing DA cells, Nurr1 is required for the expression of several genes important for DA synthesis and function. However, Nurr1 is probably also important for the maintenance of adult DA neurons and plays additional less-well-elucidated roles in other regions of the central nervous system and in peripheral tissues.

Journal

Cell and Tissue ResearchSpringer Journals

Published: Sep 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off