Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract The work is devoted to the numerical investigation of unsteady regimes of the paraffin convective melting inside a closed rectangular region heated from the energy source with a constant density of the volumetric heat generation. The problem has been formulated in dimensionless transformed variables “stream function−vorticity−temperature” and solved by using a finite difference method. The main characteristics of the melting process and heat transfer in a liquid medium have been obtained and analyzed at different powers of the energy source (from 5 to 100 Watt). The influence of heat transfer from the source on the temperature distributions inside the region containing paraffin has been analyzed.
Thermophysics and Aeromechanics – Springer Journals
Published: Jul 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.