Access the full text.
Sign up today, get DeepDyve free for 14 days.
The development of automatic tracking solar concentrator photovoltaic systems is currently attracting growing interest. High concentration photovoltaic systems (HCPVs) combining triple-junction InGaP/lnGaAs/Ge solar cells with a concentrator provide high conversion efficiencies. The mathematical model for triple-junction solar cells, having a higher efficiency and superior temperature characteristics, was established based on the one-diode equivalent circuit cell model. A paraboloidal concentrator with a secondary optic system and a concentration ratio in the range of 100X–150X along with a sun tracking system was developed in this study. The GaInP/GalnAs/Ge triple-junction solar cell, produced by AZUR SPACE Solar Power, was also used in this study. The solar cells produced by Shanghai Solar Youth Energy (SY) and Shenzhen Yinshengsheng Technology Co. Ltd. (YXS) were used as comparison samples in a further comparative study at different concentration ratios (200X–1000X). A detailed analysis on the factors that influence the electrical output characteristics of the InGaP/lnGaAs/Ge solar cell was conducted with a dish-style concentrating photovoltaic system. The results show that the short-circuit current (Isc) and the open-circuit voltage (Voc) of multijunction solar cells increases with the increasing concentration ratio, while the cell efficiency (ηc) of the solar cells increases first and then decreases with increasing concentration ratio. With increasing solar cell temperature, Isc increases, while Voc and ηc decrease. A comparison of the experimental and simulation results indicate that the maximum root mean square error is less than 10%, which provides a certain theoretical basis for the study of the characteristics of triple-junction solar cell that can be applied in the analysis and discussion regarding the influence of the relevant parameters on the performance of high concentration photovoltaic systems.
"Frontiers in Energy" – Springer Journals
Published: Jul 30, 2019
Keywords: concentration; three-junction solar cell; mathematical model; electrical properties; solar energy
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.