Novel miRNA genes methylated in lung tumors

Novel miRNA genes methylated in lung tumors MicroRNAs play an important role in the regulation of expression of many genes and are involved in carcinogenesis. The regulation of miRNA gene expression can involve the methylation of promoter CpG islands. In this work, the methylation of six miRNA genes (mir-107, mir-125b-1, mir-130b, mir-137, mir-375, and mir-1258) in non-small-cell lung cancer (NSCLC) was studied for the first time by methylation-specific PCR using a representative set of specimens (39 cases). Four new genes (mir-125b-1, mir-137, mir-375, and mir-1258) methylated in primary NSCLC tumors were identified with frequencies of 56, 31, 56, and 36%, respectively. The frequencies of miRNA promoter methylation in DNA of tumors and histologically normal tissues differed significantly (P ≤ 0.05 by Fisher’s test). In lung tissues of 20 donors without a history of cancer, these genes were only methylated in a few cases. It was also shown that the previously unstudied promoter CpG islands of mir-107 and mir-130b were not methylated in NSCLC. The frequencies of mir-125b-1 and mir-137 methylation were shown for the first time to correlate with NSCLC progression (clinical stage and metastasis). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Novel miRNA genes methylated in lung tumors

Loading next page...
 
/lp/springer-journals/novel-mirna-genes-methylated-in-lung-tumors-gQuPUs8Xy2
Publisher
Springer Journals
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795413070119
Publisher site
See Article on Publisher Site

Abstract

MicroRNAs play an important role in the regulation of expression of many genes and are involved in carcinogenesis. The regulation of miRNA gene expression can involve the methylation of promoter CpG islands. In this work, the methylation of six miRNA genes (mir-107, mir-125b-1, mir-130b, mir-137, mir-375, and mir-1258) in non-small-cell lung cancer (NSCLC) was studied for the first time by methylation-specific PCR using a representative set of specimens (39 cases). Four new genes (mir-125b-1, mir-137, mir-375, and mir-1258) methylated in primary NSCLC tumors were identified with frequencies of 56, 31, 56, and 36%, respectively. The frequencies of miRNA promoter methylation in DNA of tumors and histologically normal tissues differed significantly (P ≤ 0.05 by Fisher’s test). In lung tissues of 20 donors without a history of cancer, these genes were only methylated in a few cases. It was also shown that the previously unstudied promoter CpG islands of mir-107 and mir-130b were not methylated in NSCLC. The frequencies of mir-125b-1 and mir-137 methylation were shown for the first time to correlate with NSCLC progression (clinical stage and metastasis).

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jul 12, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off