New sequential Monte Carlo methods for nonlinear dynamic systems

New sequential Monte Carlo methods for nonlinear dynamic systems In this paper we present several new sequential Monte Carlo (SMC) algorithms for online estimation (filtering) of nonlinear dynamic systems. SMC has been shown to be a powerful tool for dealing with complex dynamic systems. It sequentially generates Monte Carlo samples from a proposal distribution, adjusted by a set of importance weight with respect to a target distribution, to facilitate statistical inferences on the characteristic (state) of the system. The key to a successful implementation of SMC in complex problems is the design of an efficient proposal distribution from which the Monte Carlo samples are generated. We propose several such proposal distributions that are efficient yet easy to generate samples from. They are efficient because they tend to utilize both the information in the state process and the observations. They are all Gaussian distributions hence are easy to sample from. The central ideas of the conventional nonlinear filters, such as extended Kalman filter, unscented Kalman filter and the Gaussian quadrature filter, are used to construct these proposal distributions. The effectiveness of the proposed algorithms are demonstrated through two applications—real time target tracking and the multiuser parameter tracking in CDMA communication systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics and Computing Springer Journals

New sequential Monte Carlo methods for nonlinear dynamic systems

Statistics and Computing, Volume 15 (2) – Jan 1, 2005

Loading next page...
 
/lp/springer-journals/new-sequential-monte-carlo-methods-for-nonlinear-dynamic-systems-eC4UUMF9kH
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer Science + Business Media, Inc.
Subject
Computer Science; Data Structures, Cryptology and Information Theory; Numeric Computing; Artificial Intelligence (incl. Robotics); Statistics, general
ISSN
0960-3174
eISSN
1573-1375
D.O.I.
10.1007/s11222-005-6846-5
Publisher site
See Article on Publisher Site

Abstract

In this paper we present several new sequential Monte Carlo (SMC) algorithms for online estimation (filtering) of nonlinear dynamic systems. SMC has been shown to be a powerful tool for dealing with complex dynamic systems. It sequentially generates Monte Carlo samples from a proposal distribution, adjusted by a set of importance weight with respect to a target distribution, to facilitate statistical inferences on the characteristic (state) of the system. The key to a successful implementation of SMC in complex problems is the design of an efficient proposal distribution from which the Monte Carlo samples are generated. We propose several such proposal distributions that are efficient yet easy to generate samples from. They are efficient because they tend to utilize both the information in the state process and the observations. They are all Gaussian distributions hence are easy to sample from. The central ideas of the conventional nonlinear filters, such as extended Kalman filter, unscented Kalman filter and the Gaussian quadrature filter, are used to construct these proposal distributions. The effectiveness of the proposed algorithms are demonstrated through two applications—real time target tracking and the multiuser parameter tracking in CDMA communication systems.

Journal

Statistics and ComputingSpringer Journals

Published: Jan 1, 2005

References

  • Numerical integration using sparse grids
    Gerstner, T.; Griebel, M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off