Network search games with immobile hider, without a designated searcher starting point

Network search games with immobile hider, without a designated searcher starting point In the (zero-sum) search game Γ(G, x) proposed by Isaacs, the Hider picks a point H in the network G and the Searcher picks a unit speed path S(t) in G with S(0) = x. The payoff to the maximizing Hider is the time T = T(S, H) = min{t : S(t) = H} required for the Searcher to find the Hider. An extensive theory of such games has been developed in the literature. This paper considers the related games Γ(G), where the requirement S(0) = x is dropped, and the Searcher is allowed to choose his starting point. This game has been solved by Dagan and Gal for the important case where G is a tree, and by Alpern for trees with Eulerian networks attached. Here, we extend those results to a wider class of networks, employing theory initiated by Reijnierse and Potters and completed by Gal, for the fixed-start games Γ(G, x). Our results may be more easily interpreted as determining the best worst-case method of searching a network from an arbitrary starting point. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Game Theory Springer Journals

Network search games with immobile hider, without a designated searcher starting point

Loading next page...
 
/lp/springer-journals/network-search-games-with-immobile-hider-without-a-designated-searcher-qsQ7e1iwsQ
Publisher site
See Article on Publisher Site

Abstract

In the (zero-sum) search game Γ(G, x) proposed by Isaacs, the Hider picks a point H in the network G and the Searcher picks a unit speed path S(t) in G with S(0) = x. The payoff to the maximizing Hider is the time T = T(S, H) = min{t : S(t) = H} required for the Searcher to find the Hider. An extensive theory of such games has been developed in the literature. This paper considers the related games Γ(G), where the requirement S(0) = x is dropped, and the Searcher is allowed to choose his starting point. This game has been solved by Dagan and Gal for the important case where G is a tree, and by Alpern for trees with Eulerian networks attached. Here, we extend those results to a wider class of networks, employing theory initiated by Reijnierse and Potters and completed by Gal, for the fixed-start games Γ(G, x). Our results may be more easily interpreted as determining the best worst-case method of searching a network from an arbitrary starting point.

Journal

International Journal of Game TheorySpringer Journals

Published: Feb 13, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off