Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this study, the effect of protein Tuberous sclerosis 2 (TSC2) on the dendritic spine density and length was demonstrated by using TSC2-RNA inactivation. In addition, the role of rapamycin, an antagonist of the molecular target of rapamycin, in the morphological changes of spine caused by TSC2 silencing was investigated. The features were extracted from high-resolution three-dimensional image stacks collected by two-photon laser scanning microscopy of green fluorescing pyramidal cells expressing TSC2-RNA interference (RNAi), or TSC2-RNAi and rapamycin treatment in rat hippocampal slice cultures. We proposed to apply the lognormal distribution method for feature extraction. The extracted features of three cases under investigation, namely, (1) green-fluorescent protein GFP vs TSC2-RNAi, (2) GFP vs TSC2-RNAi and rapamycin, and (3) TSC2-RNAi vs TSC2-RNAi and rapamycin, were analyzed by mutual information-based feature selection and evaluated by three classifiers, K-nearest neighbor, Perceptron, and two-layer neural networks. The results showed that both the spine density and length have significant morphological changes after TSC2-RNAi treatment. However, rapamycin treatment could reverse the effect of TSC2-RNAi on spine length but not on spine density. These results are consistent with the results reported in the scientific literature. Finally, we explored the application of pattern recognition method in a small sample with richer feature properties, namely bootstrap mutual information estimation and a mutual information-based feature selection method.
Neuroinformatics – Springer Journals
Published: Apr 11, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.