Multielement analysis of whole blood by high resolution inductively coupled plasma mass spectrometry

Multielement analysis of whole blood by high resolution inductively coupled plasma mass... An analytical method using double focusing sector field inductively coupled plasma mass spectrometry (ICP-SMS) for rapid simultaneous determination of 50 elements in digested human blood is described. Sample preparation consisted of microwave digestion with nitric acid followed by dilution with ultrapure water. The importance of controlling possible contamination sources at different sample preparation and analysis stages in order to achieve adequate method detection limits (MDL) is emphasised. Correction for matrix effects was made using scandium, indium and lutecium as internal standards. Accuracy of the data for elements suffering from spectral interferences was improved by applying either a high resolution capability of the ICP-SMS or mathematical corrections. Different approaches for accuracy assessment in blood analysis are evaluated. Additional information on trace elements concentration in selected blood reference materials is given. The between-batch precision was assessed from replicate analysis (including sample preparation) of reference materials and was better than 10% RSD for 21 elements and better than 30% RSD for 36 elements under consideration. A statistical summary for results obtained for 31 blood samples from non-exposed subjects is presented. The majority of elements tested was found in the samples at concentrations higher than MDL. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytical and Bioanalytical Chemistry Springer Journals

Multielement analysis of whole blood by high resolution inductively coupled plasma mass spectrometry

Loading next page...
 
/lp/springer-journals/multielement-analysis-of-whole-blood-by-high-resolution-inductively-NXe9NRpGg0
Publisher
Springer Journals
Copyright
Copyright © 1999 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Analytical Chemistry; Biochemistry, general; Laboratory Medicine; Characterization and Evaluation of Materials; Food Science; Monitoring/Environmental Analysis
ISSN
1618-2642
eISSN
1432-1130
DOI
10.1007/s002160051346
Publisher site
See Article on Publisher Site

Abstract

An analytical method using double focusing sector field inductively coupled plasma mass spectrometry (ICP-SMS) for rapid simultaneous determination of 50 elements in digested human blood is described. Sample preparation consisted of microwave digestion with nitric acid followed by dilution with ultrapure water. The importance of controlling possible contamination sources at different sample preparation and analysis stages in order to achieve adequate method detection limits (MDL) is emphasised. Correction for matrix effects was made using scandium, indium and lutecium as internal standards. Accuracy of the data for elements suffering from spectral interferences was improved by applying either a high resolution capability of the ICP-SMS or mathematical corrections. Different approaches for accuracy assessment in blood analysis are evaluated. Additional information on trace elements concentration in selected blood reference materials is given. The between-batch precision was assessed from replicate analysis (including sample preparation) of reference materials and was better than 10% RSD for 21 elements and better than 30% RSD for 36 elements under consideration. A statistical summary for results obtained for 31 blood samples from non-exposed subjects is presented. The majority of elements tested was found in the samples at concentrations higher than MDL.

Journal

Analytical and Bioanalytical ChemistrySpringer Journals

Published: Jun 18, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off