Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Motion of redox molecules in solution monitored by the highly-sensitive EQCM technique

Motion of redox molecules in solution monitored by the highly-sensitive EQCM technique The behavior of redox molecules in solution that was not detected by electrochemical techniques was measured by a highly-sensitive electrochemical quartz crystal microbalance (EQCM) technique that has been improved in this study to obtain a high sensitivity of EQCM measurement in solution. The improved EQCM technique allowed to monitor the motion of a redox molecule, that is an access of the molecule to an electrode surface and repulsion from the surface during redox. An EQCM technique currently in use has measured adsorption of redox molecules on an electrode surface or polymerization on the surface caused by a chemical reaction following redox, which exhibits an enough large mass change response to detect with an EQCM measurement. However, access and repulsion of redox molecule, which is a slight motion of the molecule near on electrode surface, has not been detected and investigated by an EQCM technique, because the mass change response seems to be very small. In this study, the redox behavior of methyl viologen on a bare gold surface, pyridinethiol surface and methylpyridinethiol surface was investigated. Although the three electrodes give the same cyclic voltammogram of methyl viologen, the three are different in QCM response recorded at the same time as the voltammetry. Access/repulsion of methyl viologen within an electrical double layer was monitored by the highly-sensitive EQCM technique. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Motion of redox molecules in solution monitored by the highly-sensitive EQCM technique

Loading next page...
 
/lp/springer-journals/motion-of-redox-molecules-in-solution-monitored-by-the-highly-EVFY78xWYn

References (27)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
DOI
10.1163/156856706777346408
Publisher site
See Article on Publisher Site

Abstract

The behavior of redox molecules in solution that was not detected by electrochemical techniques was measured by a highly-sensitive electrochemical quartz crystal microbalance (EQCM) technique that has been improved in this study to obtain a high sensitivity of EQCM measurement in solution. The improved EQCM technique allowed to monitor the motion of a redox molecule, that is an access of the molecule to an electrode surface and repulsion from the surface during redox. An EQCM technique currently in use has measured adsorption of redox molecules on an electrode surface or polymerization on the surface caused by a chemical reaction following redox, which exhibits an enough large mass change response to detect with an EQCM measurement. However, access and repulsion of redox molecule, which is a slight motion of the molecule near on electrode surface, has not been detected and investigated by an EQCM technique, because the mass change response seems to be very small. In this study, the redox behavior of methyl viologen on a bare gold surface, pyridinethiol surface and methylpyridinethiol surface was investigated. Although the three electrodes give the same cyclic voltammogram of methyl viologen, the three are different in QCM response recorded at the same time as the voltammetry. Access/repulsion of methyl viologen within an electrical double layer was monitored by the highly-sensitive EQCM technique.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

There are no references for this article.