Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Molecular genetic analyses of species boundaries in the sea

Molecular genetic analyses of species boundaries in the sea The tools of molecular genetics have enormous potential for clarifying the nature and age of species boundaries in marine organisms. Below I summarize the genetic implications of various species concepts, and review the results of recent molecular genetic analyses of species boundaries in marine microbes, plants, invertebrates and vertebrates. Excessive lumping, rather than excessive splitting, characterizes the current systematic situation in many groups. Morphologically similar species are often quite distinct genetically, suggesting that conservative systematic traditions or morphological stasis may be involved. Some reproductively isolated taxa exhibit only small levels of genetic differentiation, however. In these cases, large population sizes, slow rates of molecular evolution, and relatively recent origins may contribute to the difficulty in finding fixed genetic markers associated with barriers to gene exchange. The extent to which hybridization blurs species boundaries of marine organisms remains a subject of real disagreement in some groups (e.g. corals). The ages of recently diverged species are largely unknown; many appear to be older than 3 million years, but snails and fishes provide several examples of more recent divergences. Increasingly sophisticated genetic analyses make it easier to distinguish allopatric taxa, but criteria for recognition at the species level are highly inconsistent across studies. Future molecular genetic analyses should help to resolve many of these issues, particularly if coupled with other biological and paleontological approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hydrobiologia Springer Journals

Molecular genetic analyses of species boundaries in the sea

Hydrobiologia , Volume 420 (1) – Oct 9, 2004

Loading next page...
 
/lp/springer-journals/molecular-genetic-analyses-of-species-boundaries-in-the-sea-HA9wP9zxr1

References (249)

Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Freshwater & Marine Ecology; Ecology; Zoology
ISSN
0018-8158
eISSN
1573-5117
DOI
10.1023/A:1003933603879
Publisher site
See Article on Publisher Site

Abstract

The tools of molecular genetics have enormous potential for clarifying the nature and age of species boundaries in marine organisms. Below I summarize the genetic implications of various species concepts, and review the results of recent molecular genetic analyses of species boundaries in marine microbes, plants, invertebrates and vertebrates. Excessive lumping, rather than excessive splitting, characterizes the current systematic situation in many groups. Morphologically similar species are often quite distinct genetically, suggesting that conservative systematic traditions or morphological stasis may be involved. Some reproductively isolated taxa exhibit only small levels of genetic differentiation, however. In these cases, large population sizes, slow rates of molecular evolution, and relatively recent origins may contribute to the difficulty in finding fixed genetic markers associated with barriers to gene exchange. The extent to which hybridization blurs species boundaries of marine organisms remains a subject of real disagreement in some groups (e.g. corals). The ages of recently diverged species are largely unknown; many appear to be older than 3 million years, but snails and fishes provide several examples of more recent divergences. Increasingly sophisticated genetic analyses make it easier to distinguish allopatric taxa, but criteria for recognition at the species level are highly inconsistent across studies. Future molecular genetic analyses should help to resolve many of these issues, particularly if coupled with other biological and paleontological approaches.

Journal

HydrobiologiaSpringer Journals

Published: Oct 9, 2004

There are no references for this article.