Access the full text.
Sign up today, get DeepDyve free for 14 days.
We prove the existence of minimal and rigid singular holomorphic foliations by curves on the projective space ℂℙ n for every dimension n≥2 and every degree d≥2. Precisely, we construct a foliation ℱ which is induced by a homogeneous vector field of degree d, has a finite singular set and all the regular leaves are dense in the whole of ℂℙ n . Moreover, ℱ satisfies many additional properties expected from chaotic dynamics and is rigid in the following sense: if ℱ is conjugate to another holomorphic foliation by a homeomorphism sufficiently close to the identity, then these foliations are also conjugate by a projective transformation. Finally, all these properties are persistent for small perturbations of ℱ.¶This is done by considering pseudo-groups generated on the unit ball 𝔹 n ⊆ℂ n by small perturbations of elements in Diff(ℂ n ,0). Under open conditions on the generators, we prove the existence of many pseudo-flows in their closure (for the C 0-topology) acting transitively on the ball. Dynamical features as minimality, ergodicity, positive entropy and rigidity may easily be derived from this approach. Finally, some of these pseudo-groups are realized in the transverse dynamics of polynomial vector fields in ℂℙ n .
Journal of the European Mathematical Society – Springer Journals
Published: Jun 1, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.