Metabolic response of potato plants to an antisense reduction of the P-protein of glycine decarboxylase

Metabolic response of potato plants to an antisense reduction of the P-protein of glycine... Potato (Solanum tuberosum L. cv. Desiré) plants with reduced amounts of P-protein, one of the subunits of glycine decarboxylase (GDC), have been generated by introduction of an antisense transgene. Two transgenic lines, containing about 60–70% less P-protein in the leaves compared to wild-type potato, were analysed in more detail. The reduction in P-protein amount led to a decrease in the ability of leaf mitochondria to decarboxylate glycine. Photosynthetic and growth rates were reduced but the plants were viable under ambient air and produced tubers. Glycine concentrations within the leaves were elevated up to about 100-fold during illumination. Effects on other amino acids and on sucrose and hexoses were minor. Nearly all of the glycine accumulated during the day was metabolised during the following night. The data suggest that the GDC operates far below substrate saturation under normal conditions thus allowing a flexible and fast response to changes in the environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Planta Springer Journals

Metabolic response of potato plants to an antisense reduction of the P-protein of glycine decarboxylase

Loading next page...
 
/lp/springer-journals/metabolic-response-of-potato-plants-to-an-antisense-reduction-of-the-p-hWqzMD4B99
Publisher
Springer Journals
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Plant Sciences; Agriculture; Ecology; Forestry
ISSN
0032-0935
eISSN
1432-2048
D.O.I.
10.1007/s004250000460
Publisher site
See Article on Publisher Site

Abstract

Potato (Solanum tuberosum L. cv. Desiré) plants with reduced amounts of P-protein, one of the subunits of glycine decarboxylase (GDC), have been generated by introduction of an antisense transgene. Two transgenic lines, containing about 60–70% less P-protein in the leaves compared to wild-type potato, were analysed in more detail. The reduction in P-protein amount led to a decrease in the ability of leaf mitochondria to decarboxylate glycine. Photosynthetic and growth rates were reduced but the plants were viable under ambient air and produced tubers. Glycine concentrations within the leaves were elevated up to about 100-fold during illumination. Effects on other amino acids and on sucrose and hexoses were minor. Nearly all of the glycine accumulated during the day was metabolised during the following night. The data suggest that the GDC operates far below substrate saturation under normal conditions thus allowing a flexible and fast response to changes in the environment.

Journal

PlantaSpringer Journals

Published: Apr 12, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off