Mechanical deburring and edge-finishing processes for aluminum parts—a review

Mechanical deburring and edge-finishing processes for aluminum parts—a review Burr formation is considered as a detrimental phenomenon that not only decreases the machined part surface and assembly quality, but also increases the production cost. To conduct burr removal from machined edges and holes, the costly and non-desirable secondary operation, so-called deburring, is demanded. The complexity and severity of deburring processes depend on several factors, including burr size, location, and the material to be deburred. Due to vast applications of aluminum alloys in numerous manufacturing sectors including automotive and aerospace industries, adequate knowledge of the most widely used deburring processes on aluminum alloys is demanded. However, surprisingly, despite the acute demands by numerous manufacturing sectors, no state of the art was found in the open literature about applicable deburring and edge-finishing methods for aluminum work parts. This lack is intended to be remedied in this work by providing an insight into the most widely used deburring and edge-finishing processes for aluminum work parts. To that end, several deburring classifications were proposed. The main highly used category of deburring techniques is mechanical deburring process which is related to the removal of various kinds of burr shapes and size by means of mechanical abrasion. In fact, mechanical deburring processes are the most widely used techniques due to versatility, flexibility, deburring rate, and acceptable cost. Among mechanical deburring methods, several methods including robotic, CNC, and manual deburring were presented in this work. A brief insight into the application of several other non-classified mechanical deburring processes was also presented. In addition, knowing that an accurate selection of deburring methods is highly dependent to proper understanding of the burr formation, therefore, an overview of burr formation mechanism, morphology, shape, and, in principle, those factors governing burr formation are also presented, followed by experimental, numerical, and analytical models of burr formation morphology and size. Other general concerns, including the use of lubricant and its effects on deburring performance, must be identified. The future demands of precision deburring are challenging, not only for machine tools and deburring tools, but also for high-precision machining researchers. Close collaborations between machine tool builders, CAD/CAM programmers for precision tool path planning, and deburring and edge-finishing R & D community are highly demanded towards the successful movement to the next generation of precision deburring and edge finishing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Mechanical deburring and edge-finishing processes for aluminum parts—a review

Loading next page...
 
/lp/springer-journals/mechanical-deburring-and-edge-finishing-processes-for-aluminum-parts-a-MhdotIMC3v
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1288-8
Publisher site
See Article on Publisher Site

Abstract

Burr formation is considered as a detrimental phenomenon that not only decreases the machined part surface and assembly quality, but also increases the production cost. To conduct burr removal from machined edges and holes, the costly and non-desirable secondary operation, so-called deburring, is demanded. The complexity and severity of deburring processes depend on several factors, including burr size, location, and the material to be deburred. Due to vast applications of aluminum alloys in numerous manufacturing sectors including automotive and aerospace industries, adequate knowledge of the most widely used deburring processes on aluminum alloys is demanded. However, surprisingly, despite the acute demands by numerous manufacturing sectors, no state of the art was found in the open literature about applicable deburring and edge-finishing methods for aluminum work parts. This lack is intended to be remedied in this work by providing an insight into the most widely used deburring and edge-finishing processes for aluminum work parts. To that end, several deburring classifications were proposed. The main highly used category of deburring techniques is mechanical deburring process which is related to the removal of various kinds of burr shapes and size by means of mechanical abrasion. In fact, mechanical deburring processes are the most widely used techniques due to versatility, flexibility, deburring rate, and acceptable cost. Among mechanical deburring methods, several methods including robotic, CNC, and manual deburring were presented in this work. A brief insight into the application of several other non-classified mechanical deburring processes was also presented. In addition, knowing that an accurate selection of deburring methods is highly dependent to proper understanding of the burr formation, therefore, an overview of burr formation mechanism, morphology, shape, and, in principle, those factors governing burr formation are also presented, followed by experimental, numerical, and analytical models of burr formation morphology and size. Other general concerns, including the use of lubricant and its effects on deburring performance, must be identified. The future demands of precision deburring are challenging, not only for machine tools and deburring tools, but also for high-precision machining researchers. Close collaborations between machine tool builders, CAD/CAM programmers for precision tool path planning, and deburring and edge-finishing R & D community are highly demanded towards the successful movement to the next generation of precision deburring and edge finishing.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off