Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract A new formulation of the orbital element-based relative motion equations is developed for general Keplerian orbits. This new solution is derived by performing a Taylor expansion on the Cartesian coordinates in the rotating frame with respect to the orbital elements. The resulted solution is expressed in terms of two different sets of orbital elements. The first one is the classical orbital elements and the second one is the nonsingular orbital elements. Among of them, however, the semi-latus rectum and true anomaly are used due to their generality, rather than the semi-major axis and mean anomaly that are used in most references. This specific selection for orbital elements yields a new solution that is universally applicable to elliptic, parabolic and hyperbolic orbits. It is shown that the new orbital element-based relative motion equations are equivalent to the Tschauner-Hempel equations. A linear map between the initial orbital element differences and the integration constants associated with the solution of the Tschauner-Hempel equations is constructed. Finally, the presented solution is validated through comparison with a high-fidelity numerical orbit propagator. The numerical results demonstrate that the new solution is computationally effective; and the result is able to match the accuracy that is required for linear propagation of spacecraft relative motion over a broad range of Keplerian orbits.
Astrodynamics – Springer Journals
Published: Sep 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.