Access the full text.
Sign up today, get DeepDyve free for 14 days.
We propose a class of very simple modifications of gradient descent and stochastic gradient descent leveraging Laplacian smoothing. We show that when applied to a large variety of machine learning problems, ranging from logistic regression to deep neural nets, the proposed surrogates can dramatically reduce the variance, allow to take a larger step size, and improve the generalization accuracy. The methods only involve multiplying the usual (stochastic) gradient by the inverse of a positive definitive matrix (which can be computed efficiently by FFT) with a low condition number coming from a one-dimensional discrete Laplacian or its high-order generalizations. Given any vector, e.g., gradient vector, Laplacian smoothing preserves the mean and increases the smallest component and decreases the largest component. Moreover, we show that optimization algorithms with these surrogates converge uniformly in the discrete Sobolev Hσp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H_\sigma ^p$$\end{document} sense and reduce the optimality gap for convex optimization problems. The code is available at: https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent.
Research in the Mathematical Sciences – Springer Journals
Published: Sep 1, 2022
Keywords: Laplacian smoothing; Machine learning; Optimization
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.