Isolation and characterization of a thermostable cellulase-producing Fusarium chlamydosporum

Isolation and characterization of a thermostable cellulase-producing Fusarium chlamydosporum A thermostable cellulase-producing fungus, HML 0278, was identified as Fusarium chlamydosporum by morphological characteristics and ITS rDNA sequence analysis. HML 0278 produced extracellular cellulases in solid-state fermentation using sugar cane bassage as the carbon source. Native-PAGE analysis demonstrated that this fungus strain was capable of producing the three major components of cellulases and xylanase, with a yield of 281.8 IU/g for CMCase, 182.4 IU/g for cellobiohydrolase, 135.2 IU/g for β-glucosidase, 95.2 IU/g for filter paper activity, and 4,720 IU/g for xylanase. More importantly, the CMCase and β-glucosidase produced by HML 0278 showed stable enzymatic activities within pH 4–9 and pH 4–10, and at temperatures below 70 and 60°C, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png World Journal of Microbiology and Biotechnology Springer Journals

Isolation and characterization of a thermostable cellulase-producing Fusarium chlamydosporum

Loading next page...
 
/lp/springer-journals/isolation-and-characterization-of-a-thermostable-cellulase-producing-lq10yjPbbZ
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Microbiology ; Environmental Engineering/Biotechnology; Applied Microbiology; Biochemistry, general; Biotechnology
ISSN
0959-3993
eISSN
1573-0972
DOI
10.1007/s11274-010-0383-x
Publisher site
See Article on Publisher Site

Abstract

A thermostable cellulase-producing fungus, HML 0278, was identified as Fusarium chlamydosporum by morphological characteristics and ITS rDNA sequence analysis. HML 0278 produced extracellular cellulases in solid-state fermentation using sugar cane bassage as the carbon source. Native-PAGE analysis demonstrated that this fungus strain was capable of producing the three major components of cellulases and xylanase, with a yield of 281.8 IU/g for CMCase, 182.4 IU/g for cellobiohydrolase, 135.2 IU/g for β-glucosidase, 95.2 IU/g for filter paper activity, and 4,720 IU/g for xylanase. More importantly, the CMCase and β-glucosidase produced by HML 0278 showed stable enzymatic activities within pH 4–9 and pH 4–10, and at temperatures below 70 and 60°C, respectively.

Journal

World Journal of Microbiology and BiotechnologySpringer Journals

Published: Mar 30, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off