Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway

Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of... Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the induction of antioxidant gene expression and protects cells against oxidative injury. However, there are controversial findings regarding the roles of Nrf2 on bone metabolism under oxidative stress. The role of Nrf2 on the differentiation of radiation-exposed osteoblasts is also unclear. We investigated whether Nrf2 negatively or positively affects osteoblast differentiation in response to irradiation. Irradiation inhibited osteoblast differentiation of MC3T3-E1 cells in a dose-dependent manner. This inhibition was evidenced by the irradiation-mediated decreases in bone-like nodule formation, alkaline phosphatase (ALP) activity, calcium accumulation, and expression of osteoblast markers, such as ALP, osteocalcin, osteopontin, bone sialoprotein, osterix, and Runx2. These reductions were accompanied by increased induction of Nrf2 and heme oxygenase-1 (HO-1), accumulation of cellular oxidants, and depletion of antioxidant defense enzymes. siRNA-mediated silencing of Nrf2 markedly reversed the negative effect of irradiation on osteoblast differentiation of the cells, leading to a decrease in HO-1 and an increase in Runx2 levels. Irradiation-mediated decreases in the levels of Runx2 and osteocalcin mRNA, but not of Nrf2 protein, were also significantly inhibited by HO-1 inhibitor, zinc protoporphyrin IX. Furthermore, N-acetyl cysteine restored all of the changes induced by irradiation to near-normal levels in the cells. These results demonstrate that irradiation inhibits osteoblast differentiation and mineralization of MC3T3-E1 cells through the oxidative stress-mediated activation of Nrf2/HO-1 pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular and Cellular Biochemistry Springer Journals

Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway

Loading next page...
 
/lp/springer-journals/irradiation-inhibits-the-maturation-and-mineralization-of-osteoblasts-w90VlCGEoP

References (42)

Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Medical Biochemistry; Oncology; Cardiology
ISSN
0300-8177
eISSN
1573-4919
DOI
10.1007/s11010-015-2559-z
pmid
26346162
Publisher site
See Article on Publisher Site

Abstract

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the induction of antioxidant gene expression and protects cells against oxidative injury. However, there are controversial findings regarding the roles of Nrf2 on bone metabolism under oxidative stress. The role of Nrf2 on the differentiation of radiation-exposed osteoblasts is also unclear. We investigated whether Nrf2 negatively or positively affects osteoblast differentiation in response to irradiation. Irradiation inhibited osteoblast differentiation of MC3T3-E1 cells in a dose-dependent manner. This inhibition was evidenced by the irradiation-mediated decreases in bone-like nodule formation, alkaline phosphatase (ALP) activity, calcium accumulation, and expression of osteoblast markers, such as ALP, osteocalcin, osteopontin, bone sialoprotein, osterix, and Runx2. These reductions were accompanied by increased induction of Nrf2 and heme oxygenase-1 (HO-1), accumulation of cellular oxidants, and depletion of antioxidant defense enzymes. siRNA-mediated silencing of Nrf2 markedly reversed the negative effect of irradiation on osteoblast differentiation of the cells, leading to a decrease in HO-1 and an increase in Runx2 levels. Irradiation-mediated decreases in the levels of Runx2 and osteocalcin mRNA, but not of Nrf2 protein, were also significantly inhibited by HO-1 inhibitor, zinc protoporphyrin IX. Furthermore, N-acetyl cysteine restored all of the changes induced by irradiation to near-normal levels in the cells. These results demonstrate that irradiation inhibits osteoblast differentiation and mineralization of MC3T3-E1 cells through the oxidative stress-mediated activation of Nrf2/HO-1 pathway.

Journal

Molecular and Cellular BiochemistrySpringer Journals

Published: Sep 7, 2015

There are no references for this article.