Involvement of the Arabidopsis thaliana AtPMS1 gene in somatic repeat instability

Involvement of the Arabidopsis thaliana AtPMS1 gene in somatic repeat instability Mismatch repair (MMR) genes participate in the maintenance of genome stability in all organisms. Based on its high degree of sequence conservation, it seems likely that the AtPMS1 gene of Arabidopsis thaliana is part of the MMR system in this model plant. To test this hypothesis, we aimed to disrupt AtPMS1 function by over-expressing mutated alleles expected to result in a dominant negative effect. To create one mutant allele we substituted two amino acids in the MutL-box, and for the other mutant allele we deleted 87 amino acids comprising the whole MutL-box. Contrary to published reports in some eukaryotes, transgenic plants expressing these alleles did not exhibit a decrease in fertility nor any other visible phenotype. To examine the impact of these mutations on microsatellite instability, the phenotype most often observed in organisms defective in MMR, reporter lines containing a uidA (GUS) gene inactivated by the insertion of a synthetic microsatellite (G7 or G16) were used. GUS gene function in these lines can be restored following the loss of one base or the gain of two bases in the repetitive tract. This results in the observation of blue sectors on a white background following histochemical staining. In a subset of the transformants, a significant increase (2- to 28-fold) in microsatellite instability was observed relative to wild-type. This report shows that MMR function can be disrupted via a dominant negative approach, and it is the first report to describe the phenotypic consequence of disrupting the function of a MutL homolog in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Involvement of the Arabidopsis thaliana AtPMS1 gene in somatic repeat instability

Loading next page...
 
/lp/springer-journals/involvement-of-the-arabidopsis-thaliana-atpms1-gene-in-somatic-repeat-YUYC90zEJ6
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-3472-0
Publisher site
See Article on Publisher Site

Abstract

Mismatch repair (MMR) genes participate in the maintenance of genome stability in all organisms. Based on its high degree of sequence conservation, it seems likely that the AtPMS1 gene of Arabidopsis thaliana is part of the MMR system in this model plant. To test this hypothesis, we aimed to disrupt AtPMS1 function by over-expressing mutated alleles expected to result in a dominant negative effect. To create one mutant allele we substituted two amino acids in the MutL-box, and for the other mutant allele we deleted 87 amino acids comprising the whole MutL-box. Contrary to published reports in some eukaryotes, transgenic plants expressing these alleles did not exhibit a decrease in fertility nor any other visible phenotype. To examine the impact of these mutations on microsatellite instability, the phenotype most often observed in organisms defective in MMR, reporter lines containing a uidA (GUS) gene inactivated by the insertion of a synthetic microsatellite (G7 or G16) were used. GUS gene function in these lines can be restored following the loss of one base or the gain of two bases in the repetitive tract. This results in the observation of blue sectors on a white background following histochemical staining. In a subset of the transformants, a significant increase (2- to 28-fold) in microsatellite instability was observed relative to wild-type. This report shows that MMR function can be disrupted via a dominant negative approach, and it is the first report to describe the phenotypic consequence of disrupting the function of a MutL homolog in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off