Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Investigation the phase equilibrium behavior in ternary system (CO2, DMSO, Capecitabine as anticancer drug) for precipitation of CPT Nanoparticle via the gas antisolvent supercritical process (GAS)

Investigation the phase equilibrium behavior in ternary system (CO2, DMSO, Capecitabine as... In the current study, for finding the optimum GAS process conditions, the liquid-phase volume expansion and process conditions were evaluated for the binary [carbon dioxide (CO2)-dimethyl sulfoxide (DMSO)] and ternary [CO2-DMSO-Capecitabine (CPT)] systems, respectively. To this end, CO2, DMSO, and CPT were considered as the anti-solvent gas, organic solvent, and solute, respectively. The minimum GAS operational pressure (Pmin) for precipitation of CPT nanoparticles in the (CO2-DMSO-CPT) system was calculated by Peng-Robinson (PR-EoS) and Soave-Redlich Kowang (SRK-EoS) with conventional quadratic mixing rules (vdW2). The obtained Pmin values according to PR-EoS and SRK-EoS at 308, 318, 328 and 338 K were 7.80, 8.57, 9.78 and 10.46 MPa, and 7.27, 7.61, 7.95 and 8.13 MPa, respectively. Also, the mole fraction of CO2, DMSO and CPT in the liquid phase was determined at mentioned temperatures, using PR-EoS. For validation of these models, the Pmin values for the [CO2-DMSO-Ampicillin (AMP)] system was calculated at 308, 318, 328 and 338 K by both of models (PR-EoS and SRK-EoS) and compared with obtained results by Ghoreishi et al. for this ternary system. The computed Pmin values for precipitation of AMP nanoparticles in the (CO2-DMSO-AMP) system in this work were well in agreement with reported values in the literature.Graphical abstract[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brazilian Journal of Chemical Engineering Springer Journals

Investigation the phase equilibrium behavior in ternary system (CO2, DMSO, Capecitabine as anticancer drug) for precipitation of CPT Nanoparticle via the gas antisolvent supercritical process (GAS)

Loading next page...
 
/lp/springer-journals/investigation-the-phase-equilibrium-behavior-in-ternary-system-co2-kYGmGzuRji
Publisher
Springer Journals
Copyright
Copyright © Associação Brasileira de Engenharia Química 2021
ISSN
0104-6632
eISSN
1678-4383
DOI
10.1007/s43153-021-00185-4
Publisher site
See Article on Publisher Site

Abstract

In the current study, for finding the optimum GAS process conditions, the liquid-phase volume expansion and process conditions were evaluated for the binary [carbon dioxide (CO2)-dimethyl sulfoxide (DMSO)] and ternary [CO2-DMSO-Capecitabine (CPT)] systems, respectively. To this end, CO2, DMSO, and CPT were considered as the anti-solvent gas, organic solvent, and solute, respectively. The minimum GAS operational pressure (Pmin) for precipitation of CPT nanoparticles in the (CO2-DMSO-CPT) system was calculated by Peng-Robinson (PR-EoS) and Soave-Redlich Kowang (SRK-EoS) with conventional quadratic mixing rules (vdW2). The obtained Pmin values according to PR-EoS and SRK-EoS at 308, 318, 328 and 338 K were 7.80, 8.57, 9.78 and 10.46 MPa, and 7.27, 7.61, 7.95 and 8.13 MPa, respectively. Also, the mole fraction of CO2, DMSO and CPT in the liquid phase was determined at mentioned temperatures, using PR-EoS. For validation of these models, the Pmin values for the [CO2-DMSO-Ampicillin (AMP)] system was calculated at 308, 318, 328 and 338 K by both of models (PR-EoS and SRK-EoS) and compared with obtained results by Ghoreishi et al. for this ternary system. The computed Pmin values for precipitation of AMP nanoparticles in the (CO2-DMSO-AMP) system in this work were well in agreement with reported values in the literature.Graphical abstract[graphic not available: see fulltext]

Journal

Brazilian Journal of Chemical EngineeringSpringer Journals

Published: Nov 15, 2021

Keywords: Gas anti-solvent supercritical process; Capecitabine (CPT); Phase behavior; Thermodynamic modeling; Volume expansion

References