Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Investigation on tribological performance of CuO vegetable-oil based nanofluids for grinding operations

Investigation on tribological performance of CuO vegetable-oil based nanofluids for grinding... With ball-bearing and tribofilm lubrication effects, CuO vegetable oil-based nanofluids have exhibited excellent anti-wear and friction reduction properties. In this study, CuO nanofluids were synthesized by a one-step electro discharge process in distilled water containing polysorbate-20 and vegetable oil as a nanoparticle stabilizer and source of fatty-acid molecules in the base fluid, respectively. Pin-on-disk tribotests were conducted to evaluate the lubrication performance of synthesized CuO nanofluids between brass/steel contact pairs under various loadings. Surface grinding experiments under minimum lubrication conditions were also performed to evaluate the effectiveness of the synthesized nanofluids in improving the machining characteristics and surface quality of machined parts. The results of pin-on-disk tests revealed that adding nanofluids containing 0.5% and 1% (mass fraction) CuO nanoparticles to the base fluid reduced the wear rate by 66.7% and 71.2%, respectively, compared with pure lubricant. The lubricating action of 1% (mass fraction) CuO nanofluid reduced the ground surface roughness by up to 30% compared with grinding using lubricant without nano-additives. These effects were attributed to the formation of a lubrication film between the contact pairs, providing the rolling and healing functions of CuO nanoparticles to the sliding surfaces. The micrography of ground surfaces using a scanning electron microscope confirmed the tribological observations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Manufacturing Springer Journals

Investigation on tribological performance of CuO vegetable-oil based nanofluids for grinding operations

Loading next page...
 
/lp/springer-journals/investigation-on-tribological-performance-of-cuo-vegetable-oil-based-phQYXHhSJZ
Publisher
Springer Journals
Copyright
Copyright © Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2020
ISSN
2095-3127
eISSN
2195-3597
DOI
10.1007/s40436-020-00314-1
Publisher site
See Article on Publisher Site

Abstract

With ball-bearing and tribofilm lubrication effects, CuO vegetable oil-based nanofluids have exhibited excellent anti-wear and friction reduction properties. In this study, CuO nanofluids were synthesized by a one-step electro discharge process in distilled water containing polysorbate-20 and vegetable oil as a nanoparticle stabilizer and source of fatty-acid molecules in the base fluid, respectively. Pin-on-disk tribotests were conducted to evaluate the lubrication performance of synthesized CuO nanofluids between brass/steel contact pairs under various loadings. Surface grinding experiments under minimum lubrication conditions were also performed to evaluate the effectiveness of the synthesized nanofluids in improving the machining characteristics and surface quality of machined parts. The results of pin-on-disk tests revealed that adding nanofluids containing 0.5% and 1% (mass fraction) CuO nanoparticles to the base fluid reduced the wear rate by 66.7% and 71.2%, respectively, compared with pure lubricant. The lubricating action of 1% (mass fraction) CuO nanofluid reduced the ground surface roughness by up to 30% compared with grinding using lubricant without nano-additives. These effects were attributed to the formation of a lubrication film between the contact pairs, providing the rolling and healing functions of CuO nanoparticles to the sliding surfaces. The micrography of ground surfaces using a scanning electron microscope confirmed the tribological observations.

Journal

Advances in ManufacturingSpringer Journals

Published: Sep 10, 2020

There are no references for this article.